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Preface

I keep six honest serving-men
(They taught me all I knew);
Their names are What and Why and When
And How and Where and Who.

Rudyard Kipling

In the first approximation, decision making is nothing else but an optimization
problem: we want to select the best alternative. This description, however, is not
fully accurate: it implicitly assumes that we know the exact consequences of each
decision, and that, once we have selected a decision, no constraints prevent us from
implementing it. In reality, we usually know the consequences with some uncer-
tainty, and there are also numerous constraints that need to be taken into account.
The presence of uncertainty and constraints makes decision making challenging.

To resolve these challenges, we need to go beyond simple optimization, we also
need to get a good understanding of how the corresponding systems and objects
operate, a good understanding of why we observe what we observe—this will help
us better predict what will be the consequences of different decisions. All these
problems—in relation to different application areas—are themain focus of this book.

Because of this focus, we encouraged authors to include the Why word into the
titles of their papers. Several authors agreed, so this book can truly be called a
why-book, a true tribute to Rudyard Kipling.

Most papers from this book are extended and selected versions of papers presented
at the 14th InternationalWorkshop onConstraint Programming andDecisionMaking
CoProD’2021 (Szeged, Hungary, September 12, 2021); 26th UTEP/NMSU Work-
shop on Mathematics, Computer Science, and Computational Science (El Paso,
Texas, November 6, 2021); and several other conferences.
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Baudelaire’s Ideas of Vagueness and
Uniqueness in Art: Algorithm-Based
Explanations

Luc Longpré, Olga Kosheleva, and Vladik Kreinovich

Abstract According to the analysis by the French philosopher Jean-Paul Sartre,
the famous French poet and essayist Charles Baudelaire described (and followed)
two main—somewhat unusual—ideas about art: that art should be vague, and that to
create an object of art, one needs to aim for uniqueness. In this paper, we provide an
algorithm-based explanation for these seemingly counter-intuitive ideas, explanation
related to Kolmogorov complexity-based formalization of Garrett Birkhoff’s theory
of beauty.

1 Formulation of the Problem

Baudelaire’s ideas about art. In this book [32] about the famous 19 century French
poet and essayist Charles Baudelaire, Jean-Paul Sartre emphasizes the following two
somewhat unusual aspects of Baudelaire’s attitude to art.

The first aspect is explicit in Baudelaire’s essays: vagueness. In a well-studied
passage of his bookFusées, Baudelaire defines beautiful as “Something a little vague,
which leaves room for conjecture”. This may sound almost trivial now, after the
Impressionists changed our understanding of Beauty, but in Baudelaire’s time, when
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beautywas stillmostlymeasuredby theRenaissance giants such asLeonardodaVinci
or Rafael, with their highly realistic details, this was definitely an almost heretical
thought.

The second aspect is not so explicit, but can also be traced to many of his essays
and letters: uniqueness, that in order to create someone beautiful, one needs to create
something truly unique, repetition is an antithesis of beauty. This also sounds some-
what heretical: there seems to be often a lot of similarity between several beautiful
paintings.

A natural question. How can we explain these ideas?

Whatwe do in this paper. In this paper, we show that actually, both seemingly coun-
terintuitive ideas can be explained within a proper algorithm-based formalization of
what is beautiful and how can we design a beautiful object.

2 What Is Beauty—Birkhoff’s Approach and Its
Algorithm-Related Formalization

Bikrhoff’s approach. According to the theory developed by the 20th century math-
ematician Garrett D. Birkhoff—one of the founding fathers of lattice theory—beauty
B can be described as the ratio

B = O

C
(1)

between properly defined order O and complexity C ; see, e.g., [3–9]. In the simplest
cases, he formalized these notions—and showed that his formula is indeed working.

In his examples:

• Birkhoff defined complexity C as the number of construction steps needed to
construct the given object, and

• he defined order as a simplicity of the description: if we can describe an object by
using a shorter text, then its order is higher.

Birkhoff’s approach reformulated in general algorithmic terms. Birkhoff’s the-
ory appeared before the general development of algorithm theory. Now that we are
accustomed to the notion of algorithms, it is natural to reformulate his theory in
precise algorithmic terms. In these terms, the number of construction steps simply
becomes the number of computational steps—i.e., the computation time t (p) of the
algorithm p that generates the given object.

The notion of order is a little more difficult to formalize. In his examples, by a
description of the objects, Birkhoff meant a complete description, i.e., a description
which is detailed enough so that, given this description, we can uniquely reconstruct
the object. In other words, the description can serve as a program for a computational
devicewhich, given this description, reconstructs the object. In these terms, the length
of the description is equal to the length �(p) of this program p.
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In these terms, the beauty B of an object should be a function of the time t (p)
and the length �(p) of a program p that generates this object: B = B(t (p), �(p)). It
is well known in computer science that there is a trade-off between the program time
and the program length. A short program usually uses only a few ideas of speeding
up computations, and thus, takes a reasonable amount of time to run. If we want to
speed up the computations, we must add some complicated ideas and modify the
algorithm. As a result, to make the program faster, we must usually make it longer.
Vice versa, we can often shorten the program by eliminating some of the time-saving
parts and thus, by making its running time longer.

In general, if we cut a bit from the program that generates the object x , we get a
new program p′ which is exactly one bit shorter (�(p′) = �(p) − 1). To generate the
desired object x , since we do not know whether the deleted bit was 0 or 1, we can
try both possible values of this bit (i.e., run two programs p′0 and p′1) and find out
which of the two objects is better. Thus, if we delete a bit, then instead of running
the original program p once, we run two programs p′0 and p′1. Hence, crudely
speaking, when we decrease the length of the program by 1, we thus get a double
increase in the running time: t (p′) = 2t (p).

The new situation is, in effect, the same, the resulting object is the same, the
only difference is that we now have �(p′) = �(p) − 1 and t (p′) = 2t (p). It is there-
fore reasonable to require that the beauty value B(t, �) does not change under this
transformation, i.e., that for all possible values of t and �, we have

B(t, �) = B(2t, � − 1). (2)

It can be shown (see, e.g., [24]) that every function satisfying this property can be
described as a function of the following ratio:

r(p)
def= 2−�(p)

t (p)
. (3)

Thus, the beauty of the object can be described as the largest possible value of the
ratio (2) over all the programs p that generate this object.

Is this an adequate formalization? The ratio (3) is in perfect accordance with
Birkhoff’s formula (1):

• the time t (p) is exactly what Birkhoff meant by complexity and
• the numerator 2−�(p) is a decreasing function of the program’s (thus description’s)
length—in perfect accordance with Birkhoff’s idea of order.

How this formalization is related to other algorithmic notions. Maximizing the
ratio (3) is equivalent to minimizing its inverse t (p) · 2�(p) and to minimizing the
binary logarithm �(p) + log2(t (p)). From this viewpoint, the beauty of an object is
related:

• to the notion of Kolmogorov complexity—which is defined as the length of the
shortest possible program that generates the given object [28], and
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• to resource-bounded versions of Kolmogorov complexity [28] that minimize a
combination of the program’s length and time.

In this sense, Birkhoff’s beauty can be viewed as a particular variant of the resource-
bounded Kolmogorov complexity.

3 How This Explains the Need for Vagueness

What is vagueness. Birkhoff’s definition is usually applied to abstract objects. How-
ever, many objects of art describe real-life objects and/or events: e.g., a painting can
reflect a person or a landscape, a poem can describe some events and/or feelings, etc.

Real-life objects can be reproduced with different number of details. For example,
we can have a photograph that captures all the details of an object, or we can have
a blurred image or even a silhouette, where only some features are reproduced and
many details are missing. This is exactly what is meant by vagueness—that some
details are missing.

Why is vagueness important for beauty. For each object of art a, we can define
its beauty B(a) as the largest possible value of the ratio (3) over all programs that
generate this object.

For the same original real-life object x , for reproductions xv corresponding to
different levels of vagueness v, we have, in general different value of beauty B(xv).
If our goal is to make the most beautiful object of art, we should select the level v

for which the corresponding beauty B(xv) is the largest possible.
There are many possible levels; let us denote this number by L � 1. A priori, we

have no reason to assume that one of these levels is more susceptible to beauty: we
can enjoy Leonardo’s madonnas with lots of detail, and we can enjoy impressionistic
painting where most details are missing. Since we do not have any reason to believe
that one of these levels is more probable as the most beautiful one, it is reasonable
to conclude that each of these levels is equally probable to be the most beautiful
one; this reasoning goes back to the 18–19 centuries’ mathematician Pierre-Simon
Laplace—one of the founders of probability theory—and is therefore known as
Laplace’s Indeterminacy Principle; see, e.g., [14]. So, each of the L levels has the
same probability 1/L to be the most beautiful.

In particular, this means that only with probability 1/L � 1, the most beautiful
level is the level of all the details. In all other cases, the most beautiful level cor-
responds to some vagueness—which explains Baudelaire’s observation that in the
overwhelming majority of cases, vagueness is an important attribute of beauty.
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4 Why Uniqueness: An Algorithmic Explanation

We want the most beautiful representation of a real-life object. As we have
mentioned earlier, there are many possible representations of an object. Our goal is
to select the most beautiful representation.

In abstract terms, our goal is to select a representation a that maximizes the
corresponding beauty B(a).

Let us analyze this problem from the algorithmic viewpoint. In contrast to
science—that studies objects that already exist—art is about creating new objects.
So, it makes sense to think of algorithms that can help in this creation.

Art can reflect everything, so the corresponding optimization problems are very
generic. In general, the problem of finding the object that maximizes a given com-
putable function is not algorithmically solvable (see, e.g., [1, 10–13, 23, 26, 31]), but
there is an important case when, under some reasonable condition, the corresponding
algorithm is possible: the case when there is exactly one optimizing object; see, e.g.,
[15–23, 25, 27, 29, 30].

Interestingly, if we consider all the cases when there are two equally good opti-
mizing objects, such an algorithm is no longer possible; see, e.g., [21–23, 30]. In this
sense, the case of uniqueness is the most general case we can consider if we want
our problems to be algorithmically solvable.

Comment. There is also some evidence that even when the algorithms for the multi-
optima case are possible, in general, algorithms corresponding to the single-optimum
case are more efficient; see, e.g., [2]; see, however, [33].

Conclusion. Thus, if we want to actually create a beautiful artistic reflection of a
given real-life object or situation, a natural idea is to impose additional restrictions
that would make the optimal reflection unique. This is exactly what Sartre described
as one of the main Baudelaire’s ideas. Thus, this idea is indeed explained.
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Selfish Gene Theory Explains Oedipus
Complex

Olga Kosheleva and Vladik Kreinovich

Abstract Sigmund Freud famously placed what he called Oedipus complex at the
center of his explanation of psychological and psychiatric problems. Freund’s anal-
ysis was based on anecdotal evidence and intuition, not on solid experiments—as
a result, for a long time, many psychologists dismissed the universality of Freud’s
findings. However, lately, experiments seem to confirm that indeed men, on average,
select wives who resemble their mothers, and women select husbands who resem-
ble their fathers. In this paper, we provide a possible biological explanation for this
observational phenomenon.

1 Oedipus Complex: A Brief Reminder

What is Oedipus complex. From his experience with patients, Sigmund Freud dis-
covered that several of his male patients experienced subconscious hostility towards
their fathers and subconscious sexual feelings towards their mothers; see, e.g., [4, 5].
Since his attention was attracted to these unexpected feelings, he started searching
for such feelings in other patients and found such feeling in most of his patients—as
well as in several healthy folks whom he analyzed. So, he came to a conclusion that
such feelings are universal, starting with early childhood.

Freud called such feelingsOedipus complex [4], after the legendaryKingOedipus
who killed his own father—not knowing that this was his father, and married his own
mother—again, not knowing that this lady was his mother.
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Psychologists also discovered similar feelings in females: they have a subcon-
scious hostility towards their mothers and subconscious sexual feelings towards their
fathers.

Modern attitude. Freud’s ideas were based on anecdotal evidence—as many other
ideas in the psychology of his time. Later, psychology became more of an experi-
mental science, many anecdotal-based ideas turned out to be not fully supported by
the evidence. As a result, many psychologists summarily dismissed these ideas—and
the universality of Oedipus complex was one of the ideas that many psychologists
dismissed.

However, later experimental studies provided support to the Oedipus complex
idea: for example, it turned out that, statistically, a person’s wife is more similar
in appearance to the person’s mother than an average woman from his region; see,
e.g., [1, 7, 8].

How can we explain this experimental evidence. Freud himself provided a socio-
logical explanation—that in ancient times, sometimes, the onlyway for young people
to get food and women was to kill their fathers, and that we still keep, to some extent,
this murderous instinct, just like many we keep many other aspects of behavior—like
fight or flight body reaction to dangers—even though they mostly make no sense at
present.

This explanation is as speculative as the original idea of the Oedipus complex. It
is desirable to have a more solid explanation for the Oedipus complex phenomenon.
Such an explanation is provided in this paper.

2 Our Explanation

Selfish gene theory: the basis for our explanation. In our explanation, we will use
the selfish gene theory; see, e.g., [3, 9]. According to this theory, each gene wants to
spread as much as possible.

From selfish gene theory to an explanation: an idea. From the viewpoint of the
selfish gene theory, what is the best partner for a man so that their children preserve
as many of the man’s genes as possible?

Seemingly ideal spouse. In general, in a child, half of the genes come from the
father, and half from the mother. So, the ideal situation when all 100% of the genes
are preserved in all the children is when the wife is genetically identical to the
husband. In this case, children get exactly the same genes as both parents.

Problem with this seemingly ideal idea. But how does the body know about the
genes? The only way for a body to see how close are the genes is to rely on the
fact that people with similar genes look similar and have other similar characteristics
such as smell, voice, etc., i.e., have similar phenotype—observable appearance.

The problem is that there is a big difference in appearance between men and
women, so even when a man and a woman have similar genes, they look differently.
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Thus, when a man selects a wife—and a woman selects a husband—they cannot rely
on similarity in appearance to decide which potential partner is the closest to them
genes-wise.

We need to look for similarity between people of the same sex. To make such a
decision, a man needs to have some other pattern (not himself) to whom to compare
his future wife—this must be a woman who has as many genes in common as this
man.

Two options. Here, we have two options.

• First, since a man inherits half of his genes from his mother, so the mother has
50% genes in common wit her son—we mean the genes that vary from person to
person; of course, the vast majority of the genes are common to all of us—these
are the genes that make human beings and no fish or apes.

• Another female relative who, in principle, shares half of the genes with a man is
his sister. All other relatives share 25% and less of the genes.

From this viewpoint, a man should look for a wife who resembles either his mother
or his sister.

Mother or sister. Shall he select a mother or a sister?

• With a mother, there is a guarantee that she shares 50% of the genes.
• In contrast, for a sister, the actual percentage may be lower. It is known that even
in monogamous animals, there is a significant percentage of children whose father
is different from the permanent partner; see, e.g., [2, 6].

From this viewpoint, on average, a sister shares fewer genes. Thus, a mother is a
more reliable pattern to whom men can compare future wives.

This explains the experimental Oedipus effect for men. So, our conclusion is that
from the biological viewpoint, it is beneficial for men to look for wives who resemble
their mothers—this is exactly what the experiments show.

What about women? Similar arguments show that for a woman, the best chance of
preserving as many genes as possible in their children is to select a husband who is
similar to their father.

But why now take Oedipus’s example literally? But why do we say “similar” to a
person’s mother or father? Why not identical?

At first glance, it may look like that from this viewpoint, the best idea is to simply
have joint childrenwith your own parents, exactly asOedipus himself did. The reason
whywe cannot replace “similar” with “identical” in our conclusions is that, as is well
know, such an incest (and even more remote incest) is very damaging to the genes.

In addition to good genes, there are also not so good genes causing all kinds of
diseases. Many of these genes only become active when they are inherited from both
parents. When spouses are not previously related, the probability that both have a
copy of such a damaging gene is low.However,when they are closely related and their
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genes are similar, the probability becomes high—and diseases start. Experiments on
animals—when practitioners try to match close relatives to come up with the fastest
horse or the most productive cow—show that incest (which for animals is called
inbreeding) indeed leads to awide spread of damaging fluctuations and degeneration;
see, e.g., [10].

This is a simple biological explanation of why marrying your own parent is a
undesirable pathology, but marrying someone who somewhat resembles you own
parent is a healthy common practice.
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Applications to Education



How to Teach Advanced Highly
Motivated Students: Teaching Strategy of
Iosif Yakovlevich Verebeichik

Olga Kosheleva and Vladik Kreinovich

Abstract The paper describes and explains the teaching strategy of Iosif Yakovle-
vich Verebeichik, a successful mathematics teacher at special mathematical high
schools—schools for students interested in and skilled in mathematics. The result-
ing strategy seems counterintuitive and contrary to all the pedagogical advice. Our
explanation is not complete: it worked well for this teacher, but others who tried
to follow seemingly the same strategy did not succeed. How he made it work, how
can others make it work—this is still not clear. In the words of Verebeichik himself,
while mathematics itself is a science, teaching mathematics is an art, which cannot
be reduced to a few recommendations.

1 Introduction

WhowasVereberichik. IosifYakovlevichVerebeichikwas a teacher ofmathematics
in St. Petersburg, Russia, who taught in special mathematical high schools where a
special emphasiswasmade onmathematics,most of the time in SchoolNo. 30, where
one of the authors (VK) studied under his guidance. Among mathematics teachers
from such schools, he was one of the most successful—his students regularly won
prizes at local and national olympiads for high school students, and after graduation,
were regularly accepted into highly competitive university programs; see, e.g., [1].

Not only he was successful in teaching students mathematics, he also managed
to make them feel good. Most of his students adored him—although not everybody.
For most of his students, he was their favorite teacher.
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What was the secret of his success? Many folks—his students, other teachers,
journalists—often asked him the same question: what is the secret of his success as a
teacher? How can other teachers become more successful? Vebereichik was willing
to help others, he gladly allowed interested teachers to attend his classes—and many
teachers benefited from this experience. However, he was not able to formulate what
exactly he is doing differently.

In replies to such a question, he always emphasized that teaching is an art—just
as it is difficult to explain why some music affects us and some does not, it is not
easy to explain why some teaching ideas work better. As a result, in contrast to many
other successful teachers, he did not leave a description of his teaching strategy.

Butwhy?Now thatmany of his students became teachers themselves—in schools, in
universities, etc.—our minds go back to Verebeichik’s success. We all ask ourselves
the same questions: What was his secret? How can we use his teaching techniques
in our own teaching?

Why now? This year, we celebrated the 100th anniversary of Verebeichik’s birth.
Many of his students shared their memories about him. Naturally, the question of
why was raised again and again.

We think we found some explanation—at least the explanation for some of the
features of his teaching that we all remember. In this paper, we tried to provide this
explanation.

This is a first attempt, maybe others can dig deeper and find other explanations
of these and other features of his teaching—we would welcome that.

2 How Mathematics (And Other Disciplines) is Usually
Taught: A Brief Reminder

Why do we need this reminder. In other to understand what Verebeichik did, let us
recall how mathematics (and other high school disciplines) is usually taught.

Classwork and homework. Most material is studied in class. Usually, for each
topic:

• the teacher describes the main ideas,
• then the teacher shows, in detail, how to solve typical problems,
• after that, the teacher asks students to solve similar problems in class.

After that, other similar problems are assigned as homeworks. The amount of
assigned homework is reasonable, so that students can maintain a healthy work-life
balance.

There is usually a textbook that describes all this in detail. So, if something is not
clear, students can always look into the textbook and clarify their understanding.
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Tests and quizzes. To gauge the student knowledge, students take several tests and
quizzes. Usually, the problems given on these tests and quizzes are similar to what
the students saw in class and on the homeworks.
How homeworks, tests, and quizzes are graded. Usually, if a student worked rea-
sonably hard, this student gets a perfect grade (A in theUS system,which corresponds
to 5 in the Russian grading system). Students who do not work as hard as required
get corresponding lower grades.

Praise, praise, and praise. In accordance with pedagogical advice, students are
always praised for what they have done, criticisms are limited to a necessary min-
imum and packaged in the most nice way—e.g., “sandwiched” better two positive
statements.

3 What Verebeichik Wanted and What He Therefore Did

Specifics of Verebeichik’s students. The above-described traditional approach to
teachingworkswell formany students. However, the students inmathematical school
are different from the average students: they clearly have better abilities to do math-
ematics. In their previous schools, they easily got As in math without making too
much effort.

What Verebeichik wanted. The main objective of Verebeichik—and of other math
teachers in the mathematical school—was to motivate the students to work harder,
to unveil their full potential in math. Not all the students became professional math-
ematicians, but all the students learned much more in this high school than their
friends in regular schools.

From the viewpoint of this objective, let us look again at how classes are usually
taught, and let us analyze what needs to be changed to better motivate the students
in mathematical school. Interestingly, we arrive at exactly the techniques that Vere-
beichik used.

Classwork. In a regular class, when explaining a new material, the teacher explains,
in detail, how to solve several typical problems.Tomake students thinkharder, instead
of explaining the solution to such a problem, a natural idea is to have students come
up with a solution—Socratic way, with a series of hints.

Another trick is: once the main ideas are clear, instead of explaining all the details
to the class, let the students themselves come up with these details on their own—as
a result, practically no solution was explained in detail in class (but of course, a
detailed solution is required on the homeworks!).

Homeworks. In a regular class, the amount of homework is reasonable, to maintain
the work-life balance. Of course, for students who have special math abilities, this
“reasonable” amount is larger than for a general student. But how larger? All students
in the class have higher math skills, but in this, they are not equal:
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• some of them are future (or even past) winners of national olympiads,
• some are simply somewhat better in math than an average high school student.

If we set up the amount of homework based on the students who are somewhat better,
then the best students would not reveal their full potential. No matter where we place
the threshold, if there are students who can easily do this amount of homework, these
students will not reveal their full potential.

A natural solution—which, without the above explanation, sounds very counter-
intuitive—is to assign an unreasonable amount of homework, so that no student will
be able to do all of it.

Do we need a textbook? Following a textbook makes studying easier. So, a way
to make students work harder is to follow some unusual path to each topic, a path
which is not reflected in any well-designed textbooks.

Tests and quizzes. In traditional pedagogy, tests and quizzes contain:

• a reasonably small number of problems, and
• these problems are similar to what was studied in class and what was done in the
homework.

To make it more challenging, natural ideas are:

• to give a high number of problems, and
• to make sure that these problems are somewhat different fromwhat was previously
studied.

Comment. Of course, when we drastically increase the number of problems, the
time needed for grading also increases—or, if it is an oral exam, the time for asking
questions and listening for the answers also increases. For grading written exams
and for asking questions on oral exams, students from a higher class (or alumni) who
have already studied this topic are asked to help.

They help willingly, first, because they were similarly helped by other students,
and two, because this way, they recall this material and learn it better.

How homeworks, tests, and quizzes are graded. In the usual teaching practice,
a student who works reasonably hard gets an excellent (A) grade. Of course, in a
mathematical school, where students’ abilities are higher, the threshold for A should
be higher. But here we encounter the same problem as with determining the amount
of homeworks to assign: whatever threshold we set, students who can easily solve
that many problems on the text will not reveal their full potential.

A solution is the same as with homework: make this threshold unrealistically
high, so that most (or even all) students will get at most B (which is 4 in the Russian
system).

Comment. Of course, it is desirable not to ruin the students’ Grade Point Average
(GPA)—which is important for admission to universities, etc. So, this tough grading
is only done in the beginning; after that, students already get in the habit of working
hard.
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Praise? In the traditional teaching practice, a teacher tries to praise the students as
much as possible. One of the reasons for this is that praise provides an additional
motivation for students—in addition to grades.

The problem with this is that once a student is praised for his/her achievement,
this student is less motivated to do better. To avoid this slow-down, and to make sure
that all the students work as hard as they can, praise is minimized, and criticisms
become more bare.

4 Let Us Summarize

Summary. According to our analysis, the best strategy for a teacher in mathematical
school is as follows:

• instead of explaining the topic, use Socratic method: give hints so that the students
themselves come up with the ideas;

• for all examples, provide the main ideas, but never all the details;
• assign an unreasonably large amount of homeworks, so that no student will be
able to do all of them;

• select a way of presenting each topic which is not described in detail in any
textbook;

• on each test and quiz, assignmany problems, andmake sure that they are somewhat
different from the types of the problems the students had earlier;

• grade the homeworks, tests, and quizzes in such a way that practically no one gets
a perfect grade.

Are we serious? When formulated this way, what we have described is a monster
teacher who violates all known pedagogical principles. Based on this description,
students should hate this teacher, and the school principal should fire him/her on the
spot. And still we loved Vereberichik—and, by the way, hated some teachers who
tried to follow seemingly the same approach. Why?

Theonly answerwe cangive here is to repeatVebereichik’s statement that teaching
is largely art: there was something in Vereberichik’s personality that allowed us to
accept his teaching style—while other teachers who lacked this “something” were
not that successful. What is this “something”—maybe someone can find out.
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Why 70/100 Is Satisfactory? Why Five
Letter Grades? Why Other Academic
Conventions?

Christian Servin, Olga Kosheleva, and Vladik Kreinovich

Abstract Why 70/100 is usually a threshold for a student’s satisfactory perfor-
mance? Why there are usually only five letter grades? Why the usual arrangement of
research, teaching, and service is 40-40-20? We show that all these arrangements—
and other similar academic arrangements—can be explained by two ideas: the
Laplace Indeterminacy Principle and the seven plus minus two law.

1 Why 70/100 Is Satisfactory?

Formulation of the problem. In the standard US teaching arrangement, about 70
points out of 100 means a satisfactory grade—less than that is failing.

A similar proportion works well outside the academic world: e.g., at Google, if
you have fulfilled 70% of your annual goals, this is considered to be a satisfactory
performance.

Since this arrangement is actively used for a long time, it probably reflects the
intuitive idea of a satisfactory learning level. But a natural question remains: how
can we explain this empirical fact—that namely 70/100 is the satisfactory threshold?

What is satisfactory: intuitive idea. Crudely speaking, satisfactory means that the
amount of the course material that the student knows is (significantly) larger than

C. Servin
Information Technology Systems Department, El Paso Community College (EPCC), 919 Hunter
Dr., El Paso, TX 79915-1908, USA
e-mail: cservin1@epcc.edu

O. Kosheleva
Department of Teacher Education, University of Texas at El Paso, 500 W. University, El Paso, TX
79968, USA
e-mail: olgak@utep.edu

V. Kreinovich (B)
Department of Computer Science, University of Texas at El Paso, 500 W. University, El Paso, TX
79968, USA
e-mail: vladik@utep.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Ceberio and V. Kreinovich (eds.), Decision Making Under Uncertainty
and Constraints, Studies in Systems, Decision and Control 217,
https://doi.org/10.1007/978-3-031-16415-6_4

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16415-6_4&domain=pdf
cservin1@epcc.edu
 854 46354 a 854 46354 a
 
mailto:cservin1@epcc.edu
olgak@utep.edu
 854
51446 a 854 51446 a
 
mailto:olgak@utep.edu
vladik@utep.edu
 854
56538 a 854 56538 a
 
mailto:vladik@utep.edu
https://doi.org/10.1007/978-3-031-16415-6_4
 -2047 61852
a -2047 61852 a
 
https://doi.org/10.1007/978-3-031-16415-6_4


26 C. Servin et al.

the amount of the course material that the student does not know. Equivalently, the
amount of the course material that the student does not know is (much) smaller than
the amount of the course material that the student knows.

We need to formalize this idea. If we did not have the imprecise words “signifi-
cantly” and “much”, the formalization would be very straightforward: the proportion
k of the course material that the student knows should be larger than the proportion
d = 1 − k of the course material that the student does not know: d < k. This would
mean that the threshold would be 50/100. However, while, e.g., 0.51 is larger than
1 − 0.51 = 0.49, one cannot say that it 0.51 significantly larger than 0.49.

Yes, 0.49 is smaller than 0.51, but, intuitively, 0.49 is not a meaningful represen-
tative of numbers which are smaller than 0.51. If you ask a person to name a typical
representative of numbers which are smaller than 0.51, it is highly improbable that
this person will select a value 0.49. So, what is the typical representative of numbers
smaller than a given one?

Analysis of the problem. In general, once we have a number k, what is a typical
representative of all the non-negative numbers which are smaller than k?

To answer this question, let us first note that while from the purely mathematical
viewpoint, there are infinitely many numbers on the interval [0, k], in practice, there
is usually some small amount h such that values whose difference is smaller than h
are indistinguishable. For example, for grades scaled from 0 to 100, it is usually 1
point or, sometimes, 0.1 points.

In this case, we have only finitely many possible smaller values: 0, h, 2h, 3h, …,
all the way to the largest value n · h, where n ≈ k/h. For example, if h = 1, then for
grades smaller than 70, we have 70 different possible values 0, 1, 2, 3,…, all the way
to 69. For h = 0.1, we get possible values 0, 0.1, 0.2, 0.3, …, all the way to 69.9.

When we say that some value t is a “typical” representation of all these values,
whatwemean that this typical value should be kind of close to all possible values, i.e.,
that we should have t ≈ 0, t ≈ h, t ≈ 2h, t ≈ 3h, …, t ≈ n · h. In other words, the
tuple (t, t, t, t, . . . , t) formed by the left-hand sides of these approximate equalities
should be close to the tuple (0, h, 2h, 3h, . . . , n · h) formed by the right-hand sides.

Tuples of real numbers can be naturally represented as points in the corresponding
multi-D space, and thus, the distance

d((t, t, t, t, . . . , t), (0, h, 2h, 3h, . . . , n · h)) =
√
(t − 0)2 + (t − h)2 + (t − 2h)2 + (t − 3h)2 + . . . + (t − n · h)2 (1)

between the corresponding points is the natural measure of closeness between the
tuples. The closer the tuples, the more typical is the value t . Thus, we need to select
the value t for which the distance (1) is the smallest possible.
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A non-negative expression (1) is the smallest if and only if its square

d2((t, t, t, t, . . . , t), (0, h, 2h, 3h, . . . , n · h)) =

(t − 0)2 + (t − h)2 + (t − 2h)2 + (t − 3h)2 + . . . + (t − n · h)2 (2)

is the smallest. Differentiating this expression with respect to the unknown t and
equating the resulting derivative to 0, we conclude that

2 · (t − 0) + 2 · (t − h) + 2 · (t − 2h) + 2 · (t − 3h) + . . . + 2 · (t − n · h) = 0.
(3)

Dividing both sides of this equality by 2 and moving all free terms to the right-hand
side, we get

(n + 1) · t = 0 + h + 2h + 3h + . . . + n · h = (0 + 1 + 2 + 3 + . . . + n) · h.
(4)

It is known that

0 + 1 + 2 + 3 + . . . + n = n · (n + 1)

2
,

hence the equality (4) takes the form

(n + 1) · t = n · (n + 1)

2
· h,

and thus,

t = n · h
2

.

Since n · h ≈ k—and the difference between these two value is of order h, i.e.,
negligible, we conclude that t ≈ k/2.

In other words, among all the values which are smaller than k, the typical value is

t = k

2
. (5)

Comment. In the above argument, we implicitly assumed that all possible values 0,
h, 2h, 3h, …, are equally possible. This assumption makes sense—since we have no
reason to assume that some of these values are more probable than others. Such an
argument is known as Laplace Indeterminacy Principle. It is a particular case of a
very successful more general argument of this type known as the Maximum Entropy
Approach; see, e.g., [2].

Resulting formalization leads to approximately 70/100 threshold for Satisfac-
tory. Let us apply the above description (5) to our problem. Our description of
satisfactory is that the proportion d = 1 − k of the course material that a student
does not know is much smaller than the proportion k of the course material that the
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student knows. It is reasonable to select, as a threshold for this property, a “typical”
smaller-than-k value, i.e., k/2.

The condition that 1 − k = k/2 leads to k = 2/3 = 0.66 . . ., i.e., indeed to
approximately 70%.

2 Why 40-40-20 Proportion for Research, Teaching, and
Service: First Explanation

Formulation of the problem. In many universities, it is recommended that faculty
spend 40% of their time on researchj, 40% on teaching, and 20% on service. Again,
the fact that this arrangement is widely accepted means that it corresponds to the
intuitive ideas and is empirically reasonable. How can we explain this empirical
fact?

Intuitive idea. Intuitively, the idea is that we should spend equal time on research
and teaching, and less time on service.

Let us formalize this idea. The proportion r of time spent on research should be
equal to the proportion t of time spent on teaching, and should be larger that the
proportion of time s spent on service. Equality is straightforward: r = t . In line with
the above general description, it is reasonable to formalize the fact that the proportion
s is smaller than the proportion r = t as s = r/2.

This formalization leads exactly to the 40-40-20 arrangement. Let us show that
the above formalization explains the above arrangement. Indeed, from r + t + s = 1,
t = r , and s = r/2, we conclude that 2r + r/2 = 2.5r = 1, hence r = 0.4. Thus,
t = r = 0.4 and s = r/2 = 0.2, which is exactly the current arrangement.

3 Why 40-40-20 Proportion for Research, Teaching,
and Service: Second Explanation

Seven plus minus two law. Our second explanation is based on the well-known
“seven plus minus two” law (see, e.g., [3, 4]), according to which we naturally divide
everything into 7 ± 2 clusters—into how many depends on the person. Because of
this, a person who divides everything into 9 clusters will not pay serious attention
to 1/9-th of the time, a person who divides everything into 5 clusters will not pay
serious attention to any activity that takes less than 1/5-th of the overall time, etc.

Resulting explanation. Themainobjectives of a university are teaching and research,
service is clearly not that important—butwe still want people to do service, otherwise
the university will not function smoothly—serve on committees, develop curricula,
etc. We do not want faculty to spend too much time on service, but we want them to
take it seriously.
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Thus, it is reasonable to select for the service, the smallest possible proportion that
would still be taken seriously by everyone, no matter whether they divide everything
into 5 or into 9 clusters. Thus, we need the smallest number which is larger than all
the corresponding thresholds 1/9, 1/8, 1/7, 1/6, and 1/5. One can easily see that this
smallest non-negligible number is exactly 1/5 = 20%, which is exactly how much
time is allocated to service.

If we consider research and reaching to be equally important, then the remaining
time 1 − 0.2 = 0.8 should be equally divided between these two activities, into
two equal parts of 40 and 40%. So, we indeed get an explanation for the 40-40-20
arrangement.

4 Why 50-30-20 Proportion for Research Universities: Two
Explanations

What we want to be explained. In many research universities, the usual proportion
is different: 50% for research, 30% for teaching, and 20% for service. How can we
explain this arrangement?

First explanation. The main idea behind this arrangement is that a faculty should
spend less time on teaching than on research, and less time on service than on
teaching. In our notation, this means that we should have s < t and t < r .

According to our formalization, this implies that t = r/2 and s = t/2 (hence
s = r/4). Thus, the condition that r + t + s = 1 implies that

r + r/2 + r/4 = (7/4) · r = 1,

hence r = 4/7 ≈ 0.57, t = r/2 = 2/7 ≈ 0.29, and s = t/2 = 1/7 ≈ 0.14. The
resulting 57-29-14 arrangement is indeed close to 50-30-20.

Second explanation. Let us see what seven plus minus two law implies in this
situation. For service, we still want to the smallest non-negligible proportion, i.e.,
20%. The difference from the previous case is that instead of allocating equal time
to research and teaching, we allocate more time to research.

Teaching is important, so a reasonable idea is to allocate to teaching the largest
possible time for which the difference between teaching and research time should be
significant to everybody. As we have mention, the smallest non-negligible difference
is 20%. So, we have t + r = 1 − 0.2 = 0.8 and r − t = 0.2. This implies exactly
r = 0.5, t = 0.3, and s = 0.2—exactly the 50-30-20 arrangement.
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5 Why Five Letter Grades

What we want to explain. In the US system, number of points is transformed into
one of five “letter grades”—A (excellent), B (good), C (satisfactory), D (sometimes
passable), and F (fail). Letter grades are usually the only thing that does into the
student’s transcript.

In Russia—where two of us are from—we have a different system, but also 5
main grades. Why five?

Comment. At our university, periodically, faculty raise the need to have a more
specific scale, with the possibility to have A−, B+, and other combination of grades.
However, every time, a significant proportion of faculty objects, and the motion does
not pass.

In Russia, we had such an plus-minus option, we could even have two pluses like
5 + + for a really outstanding performance, and 3 − − for an almost failing one.
However, these pluses and minuses did not go into an official transcript and were not
taken into account when computing the average grade.

Natural explanation. We want the difference between letter grades to be clearly
understood by everyone, irrespective of whether they divide everything into 5, 7,
or 9 clusters. This means that we must have no more than 5 grades—otherwise, if
we had 6 or more letter grades, the difference between some of these grades would
not be clear to those who divided everything into 5 clusters. This explains why we
normally use 5 letter grades.

Comment. A similar fact is true for musical scales. Traditionally, many cultures had
different scales, some have 5 notes (pentatonic scales), the traditional Western scale
has 7 notes—which corresponds to the most frequent number of 7 clusters, and
practically all the scales have between 5 and 9 notes—in full agreement with the
seven plus minus two law.

6 Why Excellent Is Usually Close to 90

Idea. Excellentmeans that theremay be someminor faults in the student’s knowledge
of the course material, but overall, no one should be able to notice any major fault,
irrespective of whether this person divides everything into 5 or 9 clusters.

Resulting explanation. To be un-noticeable to a person who divides everything
into c clusters, the proportion d of the course material that the student does not
know should be smaller than 1/c—the smallest amount seriously recognizable by
this person. Thus, excellent knowledge means that the part d that the student does
not know should be smaller than all possible values 1/5, 1/6, 1/7, 1/8, and 1/9. This
is equivalent to requiring that d < 1/9 and that k = 1 − d > 8/9 ≈ 0.89. This is
indeed very close to the usual 90/100 threshold for “excellent” (A).
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7 How to Allocate Grades to Tests, Homeworks, etc.

Idea. The overall grade comes form adding grades for different tests, assignments,
etc. Let us use the above ideas to decide how many points out of 100 to allocate to
each test, to the final exam, to different assignments, etc. We will illustrate this idea
on two examples.

First example: a regular undergraduate class. We have three tests (also known as
midterm exams), homeworks, and a final exam. Intuitively, we should assign similar
number of points t1 = t2 = t3 to each of the three tests, and approximately the same
number of points to the homeworks h ≈ ti , but definitely the final exam is more
important, so the number of points f allocated to the final exam should be larger:

ti < f.

Similarly to what we did earlier, we interpret ti < f as ti = f/2, i.e., as f = 2ti .
Thus, the fact that the sum of all the points is 100 means that

t1 + t2 + t3 + h + f = 4ti + 2ti = 6ti = 100.

This implies that t1 = t2 = t3 = h = 100/6 ≈ 17 and f = 2 · (100/6) ≈ 33.
It is usually more convenient to use round numbers of points, i.e., numbers

divisible by 5. For 17, the closest such value is 15, and for 33, it is 35. How-
ever, if we take t1 = t2 = t3 = h = 15 and f = 35, the overall maximum grade is
4 · 15 + 35 = 95 < 100. To make it 100, we need to increase one of the allocations
by 5. Which one we increase? We want to keep all tests equally important, so we
cannot increase one of these allocations, we should increase either h of f . Which
one?

• If we increase h from 15 to 20, the difference between the new value 20 and the
original value ≈ 17 is ≈ 3.

• If we increase f from 35 to 40, the difference between the new value 40 and the
original value ≈ 33 is ≈ 7.

So, the smallest deviation from the original arrangement is when we increase h.
Thus, we arrive at the following arrangement—that many of our faculty actually use
in such situations:

• each of the three tests is worth 15 points,
• all the homeworks are worth 20 points, and
• the final exam is worth 35 points.

Second example: a regular graduate class. We have three tests, homeworks, a
project, and a final exam. This time, all three tests and homeworks are equally impor-
tant just as in the previous example, a project is more important than any of them,
and the final exam is the most important. So, we still have t1 = t2 = t3 = h. Since
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the project is more important, we allocate the number of points to it which is larger
than ti . According to our arrangement, this means ti = p/2, i.e., p = 2ti . Similarly,
the condition that p < f leads to p = f/2, i.e., to f = 2p and thus, to f = 4ti . The
condition that these allocations add up to 100 leads to

4ti + p + f = 4ti + 2ti + 4ti = 10ti = 100,

i.e., to ti = 10. So, p = 2ti = 20 and f = 4ti = 40. Thus, in this case:

• each of the three tests is worth 10 points,
• all the homeworks are worth 10 points,
• the project is worth 20 points, and
• the final exam is worth 40 points.

This is close to the arrangement that we came up with empirically.

What if we have a different number of tests. In the undergraduate case, if we have
T tests, then;

• each of the tests is worth 100/(T + 3) points,
• all the homeworks are worth 100/(T + 3) points, and
• the final exam is worth 200/(T + 3) points.

In the graduate case, if we have T tests, then:

• each of the three tests is worth 100/(T + 7) points,
• all the homeworks are worth 100/(T + 7) points,
• the project is worth 200/(T + 7) points, and
• the final exam is worth 400/(T + 7) points.

Acknowledgements This work was supported in part by the National Science Foundation grants
1623190 (AModel ofChange for Preparing aNewGeneration for Professional Practice inComputer
Science), and HRD-1834620 and HRD-2034030 (CAHSI Includes), and by the AT&T Fellowship
in Information Technology.

It was also supported by the program of the development of the Scientific-Educational Mathe-
matical Center of Volga Federal District No. 075-02-2020-1478, and by a grant from the Hungarian
National Research, Development and Innovation Office (NRDI).

References

1. Hewitt, M.: Musical Scales of the World. The Note Tree, Gloucester, UK (2013)
2. Jaynes, E.T., Bretthorst, G.L.: Probability Theory: the Logic of Science. Cambridge University

Press, Cambridge, UK (2003)
3. Miller, G.A.: The magical number seven plus or minus two: some limits on our capacity for

processing information. Psychol. Rev. 63, 81–97 (1956)
4. Milner, P.M.: Physiological Psychology. Holt, Rinehart and Winston, New York (1970)



Shall We Ignore All Intermediate
Grades?

Christian Servin, Olga Kosheleva, and Vladik Kreinovich

Abstract In most European universities, the overall student’s grade for a course is
determined exclusively by this student’s performance on the final exam. All inter-
mediate grades—on homework, quizzes, and previous texts—are, in effect, ignored.
This arrangement helps gauge the student’s performance by the knowledge that the
student shows at the end of the course. The main drawback of this approach is that
some students do not start studying until later, thinking that they can catch up and
even get an excellent grade—and this hurts their performance. To motivate students
to study hard throughout the semester, most US universities estimate the overall
grade for the course as a weighted average of the grade on the final exam and of
all intermediate grades. In this paper, we show that even when a student is already
motivated, to accurately gauge the student’s level of knowledge it is important to
take intermediate grades into account.

1 Formulation of the Problem

Two systems of grading. In most countries, in most universities, in most courses,
students have intermediate tests and quizzes, homeworks, labs, most of which are
graded. At the end of the course, there is usually a final exam which is also graded.
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In the US, usually, the overall grade for the course is estimated by combining the
grade for the final exam and all intermediate grades—most frequently, by taking the
weighted average. In contrast, in most European countries, the overall grade for the
course is the grade on the final exam, with intermediate grades serving only on a
pass-fail basis—to be able to take the final exam, a student needs to have a satisfactory
average on all intermediate exams.

Why the difference: pro and contra. The ultimate goal of the grade is that it should
reflect the knowledge that the student acquired after taking the course. From this
viewpoint, it seems to make sense to use the European system: if the student did
not do perfectly well on the intermediate exams, but eventually learned the material
perfectly, this student should get a perfect grade.

The downside of this approach is that some students procrastinate and only start
studying much later, thinking that they still have a chance to learn the material and
get the perfect grade. Sometimes they succeed, but often they don’t: they get a low
grade or even fail the class. This problem did not bother people in the past, when a
relatively small number of people could get higher education. Studentswere accepted
only after very competitive final exams, so if a student does not want to study hard,
well, good riddance, there are plenty of practically as good students eager to take
this student’s place.

However, nowadays, when jobs not requiring education are more and more auto-
mated, societies need highly educated people to survive in the global competition.
Universities accept a large number of people, and not all of them are prepared to work
hard. So we need to motivate them to study—and the US system clearly motivates
students to start studying from the very beginning, since otherwise their not so good
intermediate grades will affect their final grade for the class.

From this motivational viewpoint, some version of a US system is preferred.

What we do in this paper. In this paper, we show—somewhat unexpectedly—that
even if we have perfect motivations, and we are willing to gauge a student by the
knowledge he/she attained after the course, we still need to take intermediate grades
into account.

2 Analysis of the Problem and the Resulting Conclusion

Main idea. A typical US final exam lasts for 2 h and 45 min. The final exam is
supposed to be comprehensive, covering all main topics that were studied in the
course. It is possible to cover many things in this time, but clearly not everything that
was taught during the semester.

If a student correctly solved 7 problems out of 10, but did not do well on interme-
diate assignments, then maybe this student’s degree of knowledge is less than 70%,
he/she just got lucky by the fact that questions on the exam—which were reasonably
randomly selected from all possible questions—were mostly from the parts of the
material that this student knew. On the other hand, if, in addition to correctly solving
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7 problems out of 10 on the final exam, the student also had a similar satisfactory
grade for all intermediate assignments, we are much more confident that this student
indeed knows at least 70% of the material.

Thus, to accurately gauge the student’s degree of knowledge, it is necessary to
also take into account this student’s intermediate grades.

How to take intermediate grades into account? The above qualitative argument
shows that it is desirable to take intermediate grades into account. A natural next
question is how exactly to take the intermediate grades into account when computing
the overall grade for the course.

How the grade on the final exam is usually computed. To answer this question,
let us first recall how the grade on the final exam is usually computed.

Each question on the final exam usually consists of several parts (explicit or
implicit “sub-questions”), and the grade for this question is determined by how
many of these parts the student answered correctly. For example, if an assignment is
to apply a multi-stage algorithm, the instructor will check whether each of the steps
is correctly performed.

The grade for the final exam is then obtained by adding the grades for all the
questions. From this viewpoint, the grade for the final exam is determined by the
number of correctly answered sub-questions.

In general, if on the final grade, out of s sub-questions, the student correctly
answered n of them, then the student gets a fraction

p̃ = n

s
(1)

of the maximum possible score.

What dowewant to estimate and how canwe estimate it based on the final exam.
A natural measure of the student’s knowledge is the proportion p of all possible sub-
questions to which the student knows the correct answer. This means that for each
randomly selected sub-question, the probability that the student knows the correct
answer to this sub-question is equal to the proportion p.

The actual number n of sub-questions that the student answered correctly on the
final exam can be obtained by adding s independent 0-1-valued random variables vi
describing whether the i-th sub-question was answered correctly. For each of these
variables, vi the mean value is equal to

E[vi ] = 1 · p + 0 · (1 − p) = p, (2)

and the variance is equal to

E[(vi − E[vi ])2] = p · (1 − p)2 + (1 − p) · (0 − p)2 = p · (1 − p) · (1 − p + p) =

p · (1 − p); (3)
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see, e.g., [1] for this and following formulas.
For the sum n of several independent random variables, the mean is equal to

the sum of the means, and the variance is equal to the sum of the variances, so
E[n] = p · s and V [n] = p · (1 − p) · s.

During the 2 hours and 45 minutes we can ask a lot of sub-questions, so the
number s is reasonably large. It is known that the probability distribution of the sum
of a large number of small independent random variables is close to Gaussian—this
is a consequence of the Central Limit Theorem (and the main reason why normal
distributions are ubiquitous). Thus, we can conclude that the number n of correctly
answered sub-questions is normally distributed,withmean E[n] = p · s and standard
deviation σ [n] = √

p · (1 − p) · s.
The difference n − E[n] = n − p · s is normally distributed, with 0 mean and

standard deviation σ = √
p · (1 − p) · s. For large n, the difference n − p · s is

small, so n ≈ p · s and thus,

p ≈ p̃
def= n

s
, (4)

hence σ [n] ≈ σ̃
def= √

p̃ · (1 − p̃) · s. So, once we know the number n of sub-
questions that the student has correctly answered on the final exam, we can conclude
that the value p · s is normally distributed with mean n and standard deviation σ̃ .

Thus, the actual (unknown) grade p is also normally distributed, with mean

p̃ = n

s
(5)

and standard deviation

σ ≈
√

p̃ · (1 − p̃)

s
. (6)

How to take into account intermediate grades: idea. In addition to the s sub-
questions that form the final exam, the student also answered several sub-questions
before that, as part of intermediate tests, quizzed, homeworks, etc. Let us denote the
overall number of such sub-questions by S, and the overall number of those of these
sub-questions that the student answered correctly by N .

This does not necessarily mean that this is how much the student knows now,
at the time of the final exam: the student may have learned what he or she missed
earlier. What we can conclude, however, is that the student’s degree of knowledge is
at least as large as what can be concluded from this student’s intermediate grades.

In the worst case scenario, when the student did not learn anything since previous
exams, this student’s degree of knowledge is normally distributed with the mean

˜P = N

S
(7)

and standard deviation
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Σ =
√

˜P · (1 − ˜P)

S
. (8)

Thus, with high certainty, we can conclude that this actual degree of the stu-
dent’s knowledge is located on the k-sigma interval [˜P − k · Σ, ˜P + k · Σ], where k
depends on the desired degree of certainty: for k = 3, we get the degree of certainty
99.9%, for k = 6, we get the degree of certainty 1 − 10−8, etc.

This degree of knowledge could only increase, so we can conclude that the degree
of knowledge cannot be smaller than the value

P = ˜P − k · Σ = ˜P − k ·
√

˜P · (1 − ˜P)

S
. (9)

This leads is to the following recommendation.

How to take into account intermediate grades: recommendation. Let us assume
that out of s sub-questions on the final exam, the student answered n sub-questions
correctly. Let us also assumed that out of S sub-questions asked before the final exam,
the student answered N sub-questions correctly. Then, the actual student’s degree of
knowledge p can be described by a normal distribution with mean

p̃ = n

s
(10)

and standard deviation

σ ≈
√

p̃ · (1 − p̃)

s
(11)

restricted to values

p ≥ ˜P − k ·
√

˜P · (1 − ˜P)

S
, (12)

where we denoted
˜P = N

S
(13)

Thus, a natural measure of the student’s knowledge is the mean value of this
restricted normal distribution. The larger the intermediate grade ˜P , the larger the
restricting lower bound on p and thus, the larger the resulting mean. So, we indeed
take into account the intermediate grades when estimating the overall grade for the
class.
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Why ∞ is a Reasonable Symbol
for Infinity

Olga Kosheleva and Vladik Kreinovich

Abstract The fact that ∞ is actively used as a symbol for infinity shows that this
symbol is probably reasonable in this role, but why? In this paper, we provide a
possible explanation for why this is indeed a reasonable symbol for infinity.

1 Formulation of the Problem

Fact. In mathematics, we use the symbol ∞ for infinity.

History. This symbol was first used to describe infinity in 1655, by JohnWallis in his
book [6], on p. 4 of the section “De Sectionibus Conicis, Nova Methodo Expositis”;
see also [1, 5].

Interestingly, this symbol was, at first, not universally accepted. For example,
Leonard Euler, one of the most famous 18th century mathematicians (and probably
the most productive mathematician of all ages), used a different symbol—similar
to the current symbol ∼ for similarity; see, e.g., Euler’s paper [2] published in the
Proceedings of Russian Academy of Sciences. But:

• in spite of Euler’s authority and fame as a mathematician, it was not his symbol
that was eventually accepted as the symbol for infinity,

• it was the symbol proposed by a much less known and much less authoritative
Wallis.
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Anatural question. Whywas the current infinity symbol adopted and other symbols
not?Why is this a reasonable symbol for infinity—because if it was not, anothermore
reasonable symbol would replace it.

What we do in this paper. In this paper, we provide a possible explanation.

2 Our Explanation

What is a natural way to represent infinity: a question. How can we represent
infinity—i.e., a process without end?

First natural idea. The first natural idea that comes to mind when we think about
infinity is a straight (or curved) line.

So why not use a straight line to represent infinity?

Problem with this idea. In each sheet of paper, we only have a limited space to put
symbols in. As a result, it is not possible to place the whole straight line.

And if we cut it off and only draw a segment of the straight line, this segment
does not have any association with infinity.

We need a closed curve. Since we cannot represent an infinite motion in which the
body moves farther and farther from the original point, the next natural idea is to
represent a never-ending motion that is confined to a limited space.

Of course, in a limited space, we can only represent a limited part of the infinite
trajectory. To make sure that this part indeed represents the never-ending motion,
we need to make sure that the trajectory does not end abruptly, that it is clear how it
continues. The only way to do that is to make sure that the trajectory goes back to
one of its previous points, i.e., in mathematical terms, that the trajectory is a closed
cycle, a closed curve.

Which closed curve should we select? There are many different closed curves, with
different number of self-intersections.

Which one should we select?

Second natural idea: let us select the simplest curve. A natural idea is to select
the simplest of the closed curves, i.e., a closed curve without self-intersections.

Problem with this idea. The problem with this idea is that this is exactly a symbol
0 for zero—a closed curve with no self-intersections.

Final idea: let us select the next simplest curve. Since we cannot select the simplest
closed curve, with no self-intersections, a natural idea is to select the next simplest
curve, with exactly one self-intersection.

This is exactly the usual infinity symbol. This is exactly the usual infinity symbol!
Thus, this symbol is indeed explained.



Why ∞ is a Reasonable Symbol for Infinity 41

3 Real-Life Examples of an ∞-Like Trajectory

Trajectories that form a closed curve with exactly one self-intersection are common.
Let us give a few examples.

Astronomy. If we show how the position of the Sun in the sky—as seen from a fixed
location on Earth at the same time of day—varies over the course of a year, we will
end up with an ∞-shaped trajectory.

This fact was already known to the ancient Greeks, this is why this trajec-
tory is known by its Greek name—analemma. Claudius Ptolemy, the most famous
astronomer of the ancient times—whose system was used all the way until
Copernicus—even had a book titled Analemma; see, e.g., [4].

Chaos. Now everyone has heard about chaos and chaotic systems, i.e., systems for
which long-term prediction is not possible—since a tiny uncertainty in the original
position will eventually lead to huge uncertainty in the future state.

Historically the first such system—a simplified version of a weather system—
was discovered by Edward Lorenz in the 1960s and is, because of this, known as the
Lorenz system. Its trajectories resemble the ∞ symbol; see, e.g., [3].

Space flights. This was the shape of the trajectories of all the missions during the
1960s Apollo missions to the Moon.

The fact that the selected trajectory was a closed curve made perfect sense: it
made sure that even if the major engine fails near the Moon, the spaceship would
return, by itself, to the near-Earth part of the orbit from which it started—and thus,
be able to make a safe landing.

Out of all closed-curve trajectories, other considerations led to the selection of
the trajectory with a single self-intersection; see, e.g., [7].
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What Is 1/0 from the Practical
Viewpoint: A Pedagogical Note

Olga Kosheleva and Vladik Kreinovich

Abstract What is 1/0: Students are first taught—in elementary school—that it is
undefined, then—in calculus—then it is infinity. In both cases, the answer is usually
provided based on abstract reasoning. But what about the practical meaning? In
this paper, we show that, depending on the specific practical problem, we can have
different answers to this question: in some practical problems, the correct answer is
that 1/0 is undefined, in others, the correct answer is that 1/0 = 0—and there are
probably other practical problems where we can have different answers. Bottom line:
there is no unversal answer, the correct answer depends on what practical problem
we are considering.

1 Formulation of the Problem

What is 1/0: what students learn. In elementary school, students learn that you
cannot divide by 0. This makes sense: by definition, the ratio a/b is a number that,
multiplied by b, gives a. Of course, no matter what number you multiple by b = 0,
you always get 0, so you will never get a = 1.

Later, the student learn that in calculus, 1/0 is infinity—since 0 is the limit of,
e.g., a sequence 1/n, we can thus interpret 1/0 as the limit of values 1/(1/n) = n,
i.e., infinity.

Problem. From the purely mathematical viewpoint, both answers make sense—as
well as many other facts and results from mathematics. However, there is a differ-
ence between this mathematical fact and other mathematical facts: many other facts
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makes perfect sense in practical applications. For example, 8/4 = 2 means that if we
equally divide 8 apples between 4 students, each student gets 2 apples. Such practi-
cal examples help students better understand the corresponding mathematical facts
and results. In contrast, 1/0 seems to be a purely mathematical exercise. Usually,
no practical examples are provided to explain the meaning of this ratio. This makes
studying this idea too abstract and thus, more complicated to many students.

What we do in this paper. In this paper, we provide one of the possible practical
meanings of this ratio, and explain, for this practical example, what will the ratio 1/0
mean in this particular case.

Of course, this is just one possible practical example. We are sure that there can
be many other practical examples, and in many of them, the meaning of 1/0 will be
different.

2 Practical Problem

General description of the situation. Let us start with the general description of a
practical problem that corresponds to computing 1/c for any real number c.

This problem is related to signal propagation. It is well known that as a signal
travels—be it by wire or through air—its amplitude decreases. As a result, when the
sender sends a signal of amplitude a, the receiving agent receives a signal of smaller
amplitude r = c · a, for some value c < 1.

To reconstruct the original signal, the receiving agent thus needs to amplify the
received signal, i.e., in precise terms, to multiply it by some constant C > 1.

What is the problem.

• We know the coefficient c < 1 that describes how much the original signal
decreased.

• We want to find the amplification coefficient C that allows us to reconstruct the
original signal.

3 Idealized Setting

Description of the ideal case. Let us first consider the ideal situation when there is
no noise, and the only change in the original signal is that its amplitude decreases,
from a to c · a.
What is the proper amplification coefficient. In this case:

• we receive the signal r = c · a, and
• we multiply it by C , getting C · r = C · c · a.
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We want to make sure that for all signals a sent by the sender, the resulting signal
C · c · a is equal to exactly a, i.e., that C · c · a = a.

In particular, for a = 1, we get C · c = 1, so C = 1/c. One can easily check that
for this amplification coefficientC = 1/c, and for every sender’s signal a, we indeed
have C · c · a = (C · c) · a = 1 · a = 1.

Thus, this practical problem provides a practical interpretation for 1/c.

In this case, what is 1/0? In this interpretation, the ratio 1/0 is simply not defined:
if c = 0, then, no matter what amplification coefficient C we select, we will never
get C · c = 1.

This is exactly what kids learn in school. True, this is exactly what kids learn, that
1/0 is not defined. So far, nothing new, nothing interesting.

But remember that we consider an idealized case, when we assume that there
is no noise. In practice, there is always some noise. What happens to this practical
problem in this more realistic setting?

4 Realistic Setting

Realistic setting: general idea. Let us now take into account that, in addition to
being multiplied by a coefficient c < 1, the signal also gets corrupted by noise n. In
other words, the received signal r is equal to

r = c · a + n, (1)

where n denotes the noise, i.e., the additional change in the signal.
In this case, after amplification, you do not get the original signal, you get a signal

s = C · r = C · c · a + C · n, (2)

which is different from a even when C · c = 1.
The goal is to find the amplification coefficient C for which the amplified signal

s is the closest to the original signal a.

Realistic setting: details. We do not know the value of the noise n—if we knew
it, we could simply substract this known value from the received signal r and thus,
eliminate the effect of the noise. From the mathematical viewpoint, this means that
n is a random variable.

Natural characteristics of a random variable n are its mean value E[n] and its

variance V
def= E[(n − E[n])2]—or, equivalently, its standard deviation σ

def= √
V

for which V = σ 2; see, e.g., [1]. While we do not know the exact value of the noise,
based on the previous experiences, we can estimate both the mean and the standard
deviation.
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The additive random noise can be both positive and negative. A priori, there is
no reason to believe that positive values are more probable or negative values are
more probable, so it make sense to assume that both are equally probable, and that
the mean value of the noise is 0. Let us denote the standard deviation of noise by σn .

Similarly, we do not knowwhat will be the signal that the sender will be sending—
if we knew, there would be no need to send anything. Thus, the signal can also be
viewed as a random variable. We also do not have any reason to believe that positive
values of the signal will be more or less probable than negative values. So, it also
makes sense to assume that the mean value of the signal is 0. Let us denote the
standard deviation of the signal by σa .

Howdowe gaugewhich coefficientC is better.We are interested inminimizing the

reconstruction error, i.e., the difference d
def= s − a between the reconstructed signal

s and the original signal a. Due to (2), we get the following expression for this error:

d = (C · c − 1) · a + C · n. (3)

Since the mean values of a and n are both 0s E[a] = E[n] = 0, the mean value of
their linear combination d is also 0: E[d] = 0. It is therefore reasonable to gauge the
value d by its variance V [d] = E[d2]. Due to (3), we have

E[d2] = (C · c − 1)2 · E[a2] + 2(C · c − 1) · C · E[a · n] + C2 · E[n2]. (4)

Signal a and noise n are clearly independent, so E[a · n] = E[a] · E[n] = 0 · 0 = 0.
Thus, the formula (4) takes the form

E[d2] = (C · c − 1)2 · σ 2
a + C2 · σ 2

n . (5)

We want to find the amplification C that minimizes this expression.

The resulting optimal value of the amplification coefficient. Differentiating the
expression (5) with respect to C and equating the derivative to 0, we conclude that

2(C · c − 1) · c · σ 2
a + 2C · σ 2

n . (6)

If we divide both sides by 2 and move all the terms not containing C to the other
side, we get

C · (c2 · σ 2
a + σ 2

n ) = c · σ 2
a , (7)

hence the optimal amplification coefficient C is equal to

C = c · σ 2
a

c2 · σ 2
a + σ 2

n

. (8)

Of course, this value depends on the noise level. When the noise is small σn ≈ 0, the
value C is close to the limit value of this expression when σn → 0:
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C ≈ Clim = lim
σn→0

c · σ 2
a

c2 · σ 2
a + σ 2

n

. (9)

What is this limit?

What if c �= 0. In this case, both numerator and denominator have definite limits, so

Clim = c · σ 2
a

c2 · σ 2
a

= 1

c
. (10)

Thus, this practical problem indeed provides a natural practical interpretation for the
value 1/c—at least when c �= 0.

But what if we takec = 0? In this case, the problem also makes sense, but the limit
is different: here for all σn , we have

C = 0

σ 2
n

= 0,

and thus,
Clim = lim

σn→0
0 = 0. (11)

So, in this case, a practical problem leads to an unexpected conclusion that 1/0 = 0.

Conclusion. On the example of two practical problems, we got two different answers
to the question of what is 1/0: that it is undefined, and that it is equal to 0. We are
sure that there may be other practical problems in which the answer is 1/c for c �= 0
and for c = 0, we get a different value.

Bottom line: what is 1/0 depends on the specific practical problem, we cannot
always rely on abstract arguments.
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Historical Diversity Through Base-10
Representation of Mayan Math

Julian Viera and Olga Kosheleva

Abstract This paper attempts to engage teacher education professionals (the field of
teacher education) in a discussion about a novel approach to teaching mathematical
operations using a base-10 representation of theMayan number system. The base-10
representation was developed by Luis Fernando Magaña (Magaña, L. F. (1990). Las
matemáticas y los mayas. Ciencias (019).) as an auxiliary tool to teach elementary
children in Yucatan, Mexico. The Mayan vigesimal (base-20) system represents a
divergent historical perspective from hegemonic European treatises of the origins
of mathematics. We use a base-10 representation for mathematical operations in an
elementary methods class so that pre-service teachers begin to develop culturally
responsive pedagogy to critique discourse of power.

Keywords Mathematics education · Culturally responsive education ·Mayan math

1 Introduction

It is common for K12 students to have learned about or read about European math-
ematicians or their contributions to mathematics. Discoveries of many laws and
theorems attributed to Europeans, such as Newton’s laws of motion, Pythagorean
Theorem, and L’Hopital’s Rule, are well known by students. Even whole subjects
are credited to Europeans, such as Newton inventing calculus. Yet [2] found evidence
that mathematical scholars disagreed and finally concluded that calculus was devel-
oped by both Newton and Leibniz. More recently, Bressoud [1] posited that Indian
mathematicians were close to developing calculus. What is scare is the history of
early American mathematical achievements.
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Table 1 Mayan representations for one, five and zero

Mayan Symbol Numerical representation

one

five

zero

Table 2 Mayan base-10 representation as developed by L. F. Magaña

One ancient American civilization that appeared in Mexico about 1800 B.C. was
the Olmec. The Olmec were responsible for a 365-day calendar, the tracking of
planets, and developed several systems of writings [9]. From the Olmec arose a
mathematically advanced culture in Mesoamerica, who built large stone architecture
and developed the concept of zero with the “first recorded zero in the Americas”
occurring in a Maya carving from 357 A.D. [9, p. 22]. The Maya also developed a
base-20 numbering system using three symbols, a dot or bean, a bar, and a seashell
to represent zero (Table 1) [3, 5, 6, 8].

They employed these three symbols to calculate the movement of planets and
developed their calendar. The Maya numbering system is a position-based system
similar to the Hindu-Arabic system used in the U.S. Each digit or symbol has a value
based on its position in the representation of the number [7]. In this paper, we will
use a base-10 representation of the Mayan system (Table 2).

2 Base-10 Representation

TheMayannumber systemutilized avertical representation for numbers. Thenumber
212 is represented as two dots in the uppermost row, then one dot, followed by two
dots in the lowest level row (Table 3).

The position, or place-value, is like the Hindu-Arabic system in that there is a 2 in
the ones-place, a 1 in the tens place, and a 2 in the hundredths place.Using thismethod
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Table 3 Mayan base-10
representation for the number
212

for numerical operations allows us to introduce a culturally relevant pedagogy for
our students. We will demonstrate addition, subtraction, and multiplication using the
base-10 Mayan representation.

3 Addition

Usingmanipulatives and multiple representations is one of the five process standards
designated byNCTM [11]. Usingmanipulatives such as Cuisenaire rods, the addition
of 5 + 9 is evaluated as shown in Figs. 1, 2, 3, 4 and 5. First, the numbers 5 and
9 are represented in the first grid. Next, combine the rods into one frame. Using
place-value and regrouping, we replace bars with dots in Figs. 4 and 5. In these last
two steps, pre-service teachers can see the hierarchical aspect of regrouping. In this
example, two bars in one level, 10-ones in this example, are regrouped as one dot in
the next higher level. The two bars, 10-ones, become one in the tens place. Thus, the
sum of five and nine is 14 (Fig. 5).

Fig. 1 .

Fig. 2 .

Fig. 3 .
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Fig. 4 .

Fig. 5 .

Three-digit addition can be modeled and evaluated to emphasize place-value and
regrouping. The following example is 212+ 89. The two numbers are written verti-
cally as per the Mayan system. As depicted in the previous example, the dots and
bars are combined into one grid column. Next, convert the five dots into two bars.
Regroup the two bars as one dot in the next highest level or tens place. Regrouping
follows the NCTM standards for elementary addition; understand the place-value
structure of the base-ten number system and be able to represent and compare whole
numbers and decimals [11]. The five dots in Fig. 10 are converted to two bars in
Fig. 11, then regrouped as one dot in the next level. Figures 11 and 12 show that
when two bars are regrouped, and there are no dots left in the tens place, the seashell,
which represents zero, is used as a place holder. The final answer is 301 (Fig. 12).

Fig. 6 .
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Fig. 7 .

Fig. 8 .

Fig. 9 .
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Fig. 10 .

Fig. 11 .

Fig. 12 .
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4 Subtraction

The comparison model fits best with theMayan base-10 model for subtraction. In the
following example, we will evaluate 645 − 227. For subtraction, the two numbers
are written as vertical representations. By comparing each column, dots and bars are
eliminated without calculation. The objective is to eliminate all dots and bars from
one column to get to the difference between the two original columns or numbers.
In Fig. 15, we compare the two columns again and consider how to get dots into an
empty frame to be eliminated. Regrouping one dot from the tens to have 10-ones
in the ones-place as in Fig. 16, we can then eliminate all remaining dots. Figure 18
depicts the difference between 645 and 227 is 418.

Fig. 13 .

Fig. 14 .
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Fig. 15 .

Fig. 16 .
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Fig. 17 .

Fig. 18 .
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5 Multiplication

Our last example is multiplication. In multiplication, the numbers are placed on the
outer edges of the grid, Fig. 19. In this model-based representation, we see that we
are looking for one group of twos in each frame in column one, Fig. 20. Students can
see that we have one group of 2-tens and one group of 2-ones. The diversity of this
representation is that this process can be done by looking at the rows first. Using the
first row as a starting point, we would have two groups of 1-tens and two groups of
4-ones (see Fig. 21. In either case, we know that by grouping our dots, we can fill in
the frames in column two and row two in the same manner, Fig. 22). The product of
these two numbers is drawn in the diagonal.We combine all dots into the diagonal, as
shown in Fig. 23. Notice that the combined dots were groups of tens maintaining our
place-values. In Fig. 24, two bars represent 10-tens, so 10-tens must be regrouped
into the hundredths place, and any group of five dots has been converted into a bar.
Figure 26 shows the solution to this product, 308.

Fig. 19 .

Fig. 20 .
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Fig. 21 .

Fig. 22 .

Fig. 23 .
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Fig. 24 .

Fig. 25 .

Fig. 26 .
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The operations shown above are lessons in an elementarymethods class presented
throughout the course. We developed these lessons for an elementary methods class
taught at a private liberal arts college in eastern Kentucky. Seventeen percent of
the students were Latinx, 8% were African-American, 1% other, and 71% white.
These students knew about Pythagoras, Newton, and other European mathemati-
cians and historical figures. They were not aware of the mathematical contributions
of the Mayans and other ancient American civilizations. One pre-service student
noted: “I liked learning the Mayan-inspired lessons because it enhanced regrouping
and place value, something important to know. Learning the symbols and under-
standing base-ten better was achieved through Mayan math.” This comment shows
that students were making cognitive connections with place value and regrouping
through a historical lesson.

6 Discussion

McGee and Hostetler [10] posit that teachers should draw on historical and contem-
porary narratives to position social justice inmathematics education. Another student
from the elementarymethods class commented: “I was able to putmyself in the shoes
of students who are coming into school for the first time and do not know what math
is. I also learned why we regroup in more depth because you have to in ding Mayan
math.” This pre-service teacher empathized with what a student might feel when
learning mathematics for the first time.

The importance of diversity in our pre-service teacher education programs has
become crucial in the light of the recent history in the United States through the
lens of social justice. Developing culturally relevant pedagogy is rooted in social
justice education and implementing the culturally diverse history of mathematics.
Culturally responsive teachers can remove the standard narrative of European math-
ematical authority and liberate their students from oppressive educational practices
and ideologies [4]. As the one presented here, historical math lessons can bridge
learning mathematics better with developing culturally responsive teachers.
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Why Base-20, Base-40, and Base-60
Number Systems?

Sean R. Aguilar, Olga Kosheleva, and Vladik Kreinovich

Abstract Historically, to describe numbers, some cultures used bases much larger
than our usual base 10, namely, bases 20, 40, and 60. There are explanations for base
60, there is some explanation for base 20, but base 40—used in medieval Russia—
remains largely a mystery. In this paper, we provide a possible explanation for all
these three bases, an explanation based on the natural need to manage large groups
of people. We also speculate why different cultures used different bases.

1 Formulation of the Problem

Historical facts. In the ancient times, in addition to our usual base-10 number system
and to systemswith a smaller or similar-size base, some cultures used number systems
with much larger bases:

• Babylonians used the 60-based system (see, e.g., [3, 6, 7]). We still divide an hour
into 60 min, a minute into 60 s—this idea originated with the ancient Babylonians.

• Ancient Romans used the base-20 system. This can still be traced to how numbers
are named in modern French: for example, 80 is quatre-vingts, meaning four-
twenties, and 96 is quatre-vingt-seize, meaning four-twenties-sixteen. A similar
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20-based system—with 20 divided into four 5s—was used by the Mayans and by
the Aztecs; see, e.g., [3–7]

• Anunusual 40-based systemwas used inmedievalRussia. For example, to describe
the (large) number of churches in themedievalMoscow, theRussian chronicle says
that there were 40 of 40s (sorok sorokov), i.e.,

40 · 40 = 1600.

But why? A natural question is: why these bases and not others?

There are answers to some “why” questions, but not to all of them. There is a
good explanation of why 60: this is the number that has unusually many divisors: it
is divisible by 2, 3, 4, 5, 6, 10, 12, 15, and 20. So:

• 1/3 of a usual 60 min hour is a whole number of minutes,
• 1/4 of an hour is a whole number of minutes, etc.

This would not have been possible if we divided an hour into 100 min; see, e.g., [3,
6, 7].

There is a similar partial explanation of base 20; see, e.g., [1]. However, there is
no similar explanation for selecting 40. Moreover, from the viewpoint of the above
explanation of the base-60 system, the values 20 and 40 are not good at all: for
example, if the Romans selected 24 or 30 instead of 20, they would have had many
more divisors.

What we do in this paper. In this paper, we provide a possible explanation for
all three number bases—an explanation based on analyzing practical problems that
ancient and medieval folks faced.

2 Analysis of the Problem and the Resulting Explanation

Practical problem: management. Ancient and medieval civilizations had many
activities involving large groups of people: from army to construction. The possi-
bilities to undertake big construction projects—e.g., in irrigation or in building a
protective fortress—and to have a strong army to make peaceful life possible, these
possibilities are one of the main reasons why civilizations appeared in the first place.

When you have a large group of people involved in a certain activity, it is important
to manage them properly.

• This problem is not as acute in the army, where the soldiers are trained to follow
orders—and thus, to be managed.

• However, effective management is crucial in civilian projects, when most work-
ers do not have special training in following orders. These workers need to be
organized, and there is a need to have managers (overseers) for overseeing the
organized groups of workers.
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When the overall number of workers is very large, it is not enough to simply organize
workers in groups—there will still be too many groups. So we need to combine
groups into groups of higher level—in other words, we need to have a hierarchical
organization.

Let us start at the lowest level of the hierarchy. On the lowest level of the hierarchy,
we need to combine workers into working groups. How many people can one boss
effectively oversee? To answer this question, we need to take into account that,
according to psychology, there is a “seven plus minus two” law, according to which
a person can only keep between 7− 2 = 5 and 7+ 9 ideas in mind; how many
depends on the person:

• some can only keep 5,
• some can keep 9;

see, e.g., [2, 8–10].

• So, to make sure that any person can serve as a supervisor of such lower-level
group, we need to make sure that this group contains no more than 5 people—
otherwise people who can only keep 5 ideas in their mind at the same time will
not be able to effectively supervise this group.

• On the other hand, everyone can keep 5 ideas, so it will be a waste of resources to
make these primary groups with fewer then 5 folks.

Thus, the ideal size of the primary group is 5.

Comment. This argument shows that it is reasonable to expect base-5 number systems.
Such systems have actually been used by several cultures; see, e.g., [4].

Second level of the hierarchy. As we have mentioned earlier, even if we divide
thousands of workers into groups of 5, we will get many groups. So, to effectively
supervise these primary groups, we need to combine them into secondary groups.

How many primary groups should we combine into a secondary one? It is much
more difficult to be a boss of bosses than simply a low-level boss of people. Because
of this increased difficulty, the number of primary groups combined into a secondary
group should be smaller than 5—the number of people in each primary group. So,
we have 3 options:

• we can have 4 groups of 5, making up 20—which explains the base-20 system;
actually, the Mayans explicitly considered 20 as 4 groups of 5;

• we can have 3 groups of 5, making up 15; historically, there is no direct evidence
of base-15 systems, but there is an indirect evidence: e.g., Russia used to have
15-kopeck coins, a very unusual nomination;

• we can have 2 groups of 5, making up 10; this is our usual decimal system; its
representation as two groups of 5 can be seen, e.g., in the design of the abacus;
see, e.g., [3, 5].
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Third level. On the next level, it is even more difficult to manage, so the number
of secondary groups that form a ternary group must be smaller than the number of
primary groups in a secondary group. Here:

• For 10 = 2 · 5, there is no possibility to have fewer than 2 secondary groups.
• For 15 = 3 · 5, the only option is having 2 groups of 15 together, making it 2 · 15 =
30. There does not seem to be any evidence of any culture using base-30 number
systems.

• For 20 = 4 · 5, we have two options:
– having 3 groups of 20, making it 3 · 20 = 60; and
– having 2 groups of 20, making it 2 · 20 = 40.

The last two options provide an explanation of why 60 and 40 were used as bases.

Why 60 in Babylon, 40 in Russia, and 20 in Europe: brainstorming. The above
arguments explain why 20, 40, and 60 were used as bases, but do not explain why
different systems appeared in different countries—this requires going beyond math-
ematics, to history. We are not historians, but we can try to speculate.

Our speculation is based on the natural idea that the more obedient people are,
the less they rebel, the easier it is to control them, and thus, the larger ternary groups
can be formed.

From this viewpoint:

• Babylonia was ruled by mighty rulers for several centuries, so it could perform a
control of the largest number of 20-size groups supervised by one person: 3. This
explains why the corresponding value 3 · 20 = 60 was used in Babylonia.

• Medieval Russia was also ruled with a heavy hand, but there were still many
riots and uprisings. So, it could afford only the smaller number of 20-size groups
supervised by one person: 2. This explains why the corresponding value 2 · 20 =
40 was used in Russia.

• Finally, the Roman Empire was the site of many uprisings and revolts. This kind of
explains why even combining two 20-size groups under one person was difficult—
and this is why the ancient Romans only used base-20 system.
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Why Chomsky Normal Form:
A Pedagogical Note

Olga Kosheleva and Vladik Kreinovich

Abstract To simplify the design of compilers, Noam Chomsky proposed to first
transform a description of a programming language—which is usually given in the
form of a context-free grammar—into a simplified “normal” form.A natural question
is:why this specific normal form? In this paper, we provide an answer to this question.

1 Formulation of the Problem: Why Chomsky Normal
Form?

How programming languages are usually described. The usual way to describe a
programming language is by introducing special auxiliary notions. For example:

• The notion of a digit can be described as 0, 1, …, or 9.
• An unsigned integer can be described as either a digit, or a digit followed by an
integer.

• An if-then statement can be described as the word if followed by an opening
parenthesis, a condition, a closing parenthesis, and a statement.

One way to describe this in precise terms is by using context-free grammars; see,
e.g., [1]. In this description, we separate:

• symbols thatwill appear in the resultingprogram; such symbols are called terminal,
and

• symbols describing auxiliary notions—like integer or digit—that will not appear
in the final program; these symbols are called variables.
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In a formal description, terminal symbols are usually described by small letters, and
variables by capital letters. In terms of such symbols, the above informal descriptions
are written down as rules. For example:

• The fact that 0 is a digit (D) can be written as D → 0.
• Similarly, the fact that 1, …, 9 are digits can be written as

D → 1, . . . , D → 9.

In general, a rule S → r1 . . . rk means that if we have a combination of texts corre-
sponding to r1, …, rk , then this combination is of type S. For example:

• The above description of an unsigned integer (I ) can reformulated as the rules

I → D and I → DI.

• The description of an if-then statement (T ) can be reformulated into the rule

T → i f (C)S,

where C means a condition and S is a statement.

In a description of a programming language, we start with a notion of a program—
and in general, we start with some variable which is called starting variable. Then,
we can repeatedly use the rules to replace each notion with its clarification—until
we get to a text that only includes terminal symols.

For example, to show that 2021 is an unsigned integer, we can start with I and
then:

• first, we apply the rule I → DI ;
• we then apply the rule D → 2 to replace D with 2, and the rule I → DI to get

I → DI → 2DI ;

• we apply the rule D → 0 to replace D with 0, and the rule I → DI to get

I → DI → 2DI → 20DI ;

• we apply the rule D → 2 to replace D with 2, and the rule I → D to get

I → DI → 2DI → 20DI → 202D;

• finally, we apply the rule D → 1 to get

I → DI → 2DI → 20DI → 202D → 2021.
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Why do we need this formal description? But why do we need to translate a clear
and understandable natural-language description into a barely understandable formal
one?

The answer becomes clear if we take into account that the whole idea of a pro-
gramming language is that:

• we write a program, and
• the computer will automatically translate it into executable code and implement it.

Unfortunately, computers do not understand natural language well. So, to have an
automatic way of designing a compiler based on the description of the programming
language, we need to translate the original description into a precise language—a
language that a computer can understand.

Need for a normal form. There exist such “compiler compilers” that automatically
produce a compiler based on the description of a programming language. Probably
the best known is yacc—short of Yet Another Compiler Compiler—which is part of
a usual Unix setting.

The problem is that context-free grammars can be very complicated, with long and
complex rules. It is therefore desirable to be able to describe the original language
in a simplified (“normal”) form.

Chomsky normal form. The first such simplified form was produced by Noam
Chomsky, the famous linguist and the author of many concepts actively used in
programming languages [1]. He showed that every context-free grammar can be
transformed into a simplified form, in which only three types of rules are allowed:

• a rule S → ε, where S is a starting variable, and ε means an empty string;
• rules of the type V → a, where V is a variable and a is a terminal symbol; and
• rules of the type A → BC , where A, B, and C are variables.

WhyChomsky normal form?A natural question is: why these three types of rules?
In this paper, we provide an answer to this question.

2 Analysis of the Problem and the Resulting Explanation

Let us restrict the length of the right-hand sides. The longer the right-hand side
of the rule, the more complex this rule. Thus, to make the description simpler, it is
desirable to restrict the lengths of the right-hand sides.

The fact that every context-free grammar canbe transformed intoChomskynormal
form—in which every rule has right-hand side of length at most 2—shows that it is
possible to have a normal form in which all these lengths are bounded by 2.

Can we bound it further, to 1 or 0? Not really: if we only have rules in which the
length of the right-hand side is 0 or 1, i.e., in which the right-hand side is either an
empty string or a single symbol, then, since we start with a single symbol, we will
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only get one-letter words—and many programs have more than one letter. So, we do
need rules in which the right-hand side has length 2.

What rules with 2-symbol right-hand sides canwe have?Each of the two symbols
on the right-hand side of a rule can be either a terminal symbol a, b, …, or a variable
A, B, …Thus, we can have four possible types of such rules: A → bc, A → bC ,
A → Bc, and A → BC .

For simplicity, it is desirable to restrict ourselves to rules of only one of these
four types. Which type should we choose so that we will still be able to describe any
context-free grammar in this form?

Suppose first that we only allow rules of the type A → bc. All other rules—with
right-hand sides of length 0 or 1—do not increase the length of the word. So, using
rules A → bc is the only way to get words longer than one symbol. Thus, we can get
some 2-symbol words. However, these words do not contain variables, so we cannot
apply any rules to make them longer. Thus, with this type of rules, we will only get
2-letter words, not enough to describe all possible programming languages.

What if we only allow rules of the type A → bC? It is known that such rules
correspond to finite automata—every finite automaton can be represented as such a
grammar if:

• we assign, to each state of this automaton, a variable, and

• we transform each transition a
b→ c into a rule A → bC .

It is known that not all context-free grammars can be described by finite automata;
see, e.g., [1]. So this restriction also does not allow us to represent all possible
context-free languages.

Similarly, if we only allow rules of the type A → Bc, then the resulting language
consists of reverses of all the words obtained by using reversed rules A → cB.
The language of reverses is thus obtainable by a finite automaton—and hence, the
original language too. So, selection of these rules also does not allow us to represent
all possible context-free languages.

The only remaining case is rules of the type A → BC , which is exactly what we
have in Chomsky normal form.

What rules with 1-symbol right-hand sides can we have? The symbol in the right-
hand side is either a terminal symbol or a variable. So, rules with a single symbol in
the right-hand side are either of the form V → A or of the form V → a.

For simplicity, it is desirable to restrict ourselves to rules of only one of these
two types. Which type should we choose so that we will still be able to describe any
context-free grammar in this form?

If we only allow rules of the type V → A, then we will never be able to introduce
any terminal symbols at all. Thus, if we restrict ourselves to this type of rules, we
will never be able to generate any program at all.

The only remaining case is rules of the type V → a, which is exactly what we
have in Chomsky normal form. And we need such rules—otherwise, we will not be
able to get any programs at all.
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What rules with empty right-hand sides can we have? All these rules have the
form A → ε, for some variable A. There is only one fixed variable: the starting
variable. So, the only way to limit these rules is:

• ether to allow these rules only for the starting variable,
• or to allow such rules only for all other variables.

In the second case, we may have many such rules, while in the first case, either one
such rule or none. So the first restriction—to the starting variable A—is simpler.

This is exactly what Chomsky normal form allows. And wemay need such rule—
since by only using rules of the type A → BC and V → a—none ofwhich decreases
the length—we will never get an empty string, while some concepts in programming
languages can be empty strings.

Conclusion. So, we explained why Chomsky normal form is used—because it is the
simplest possible normal form.
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How to Best Write Research Papers:
Basic English? Sophisticated English?

Martine Ceberio, Christian Servin, Olga Kosheleva, and Vladik Kreinovich

Abstract Instructors fromEnglish department praise our students when they use the
most sophisticated grammatical constructions and the most appropriate (often rarely
used) words—as long as this helps better convey all the subtleties of the meaning. On
the other hand, we usually teach the students to use the most primitive Basic English
when writing our papers—this way, the resulting paper will be most accessible to
the international audience. Who is right? In this paper, we analyze this question by
using a natural model—inspired by Zipf’s law—and we conclude that to achieve the
largest possible effect, the paper should be written on an intermediate level—not too
primitive, not too sophisticated (actually, on the level of the middle school).

1 Formulation of the Problem

Tension between English classes and what we teach. There seems to be a systemic
tension between what our students learn in their English classes and what we teach
them when describing how to write scientific papers:
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• In English classes, use of rare words and complex constructions is strongly encour-
aged if it provides a more adequate description of the message. If the English
teacher says that the essay was written on the 5-th grade level, this is not a com-
pliment, such an essay would not get an Excellent grade.

• On the other hand,whenwe teach students, we tell them towrite inBasic English—
since science is an international endeavor, and many foreign researchers do not
know English that well to know rare words and rare constructions.

Problem. So, what is the optimal level? If we write in too complex a language, we
will miss most of the audience, and the impact of the paper will be small. On the
other hand, if we write in too simple a language, we do not convey many subtleties
of the meaning—and thus, decrease the impact as well.

What we do in this paper. In this paper, we analyze this problem, and we show
what is the optimal level of language complexity.

2 Towards Formulating the Problem in Precise Terms

Levels of complexity. Even native speakers of English are not born with the knowl-
edge of all the language’s words and constructions, they acquire it as they study. This
provides a natural scale for the language complexity used by linguists: we can be
on the level of corresponding to the average language level of kindergarten students,
we can be on the level of the 1st grade, …, level of the 12th grade, of the 1st year of
college, etc. Overall, there are about 20 different levels, all the way to PhD level.

For simplicity, we will simply mark them by numbers from 1 to 20, so that Level 1
corresponds to the most basic use of language, and Level 20 to the most sophisticated
use of the language.

Howwidely spread are different levels. Clearly, many folks around the world have
a very basic knowledge of English—and are thus on Level 1, a little fewer are on
Level 2, …, all the way to very complex Level 20 on which there is a small minority.
How many people are on each level?

A reasonable idea is to use Zipf’s law (see, e.g., [1, 3, 4]) for estimating the
relative number of people on each level. This law was first observed in linguistics,
where it turned out that if we sort all the words from a language in the reverse order
of their frequencies fi , so that

f1 ≥ f2 ≥ f3 ≥ . . . ,

then we have
fn = c

n
. (1)

for some constant c. So, the second most frequent word is twice less frequent that
the most frequent one, the third most frequent word is three times less frequent, etc.
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It turned out that a similar formula (1) is ubiquitous not only in linguistics, it is
ubiquitous in many other application areas (see, e.g., [2, 5])—and there are good
explanations for its ubiquity; see, e.g., [1, 3].

Because of this ubiquity, it makes sense to apply this law to our situation as well,
and to assume that the number of people of the i-th level of knowledge is proportional
to 1/ i .

What is the impact of different readers. The overall impact of a paper comes
from combining the impacts on different readers. Intuitively, it is clear that the most
sophisticated—thus, the most learned—readers can provide the largest impact, both
in terms of the effect on their own work and in terms of them spreading the word
around, while readers who have just started doing research will have, on average, the
smallest impact.

Here, readers on the last—n-th level (n = 20) have the largest impact, readers on
the (n − 1)-st level have a slightly smaller impact, etc., all the way to people on the
1st level who have, on average, the smallest impact. It makes sense to use Zipf’s law
to describe how this impact decreases: folks on the n-th level have the highest impact

I , folks on the next (n − 1)-th level have impact
I

2
, folks on the (n − 2)-nd level

have the impact
I

3
, etc., and, in general, folks on level i have the impact

I

n + 1 − i
.

The overall impact-per-unit-of-information of all the folks on level i can be
obtained if we multiply the number of people on this level—which is proportional to
1

i
—and the impact of each of these folks, which is proportional to

1

n + 1 − i
. Thus,

this overall impact Ii is proportional to the product

Ii ∼ 1

i · (n + 1 − i)
. (2)

Howmuch information is conveyed on each level. A big portion of information can
be conveyed already on the very first Level 1. If we allow Level 2, then an additional
portion of the original information can be conveyed, etc., and if we go from Level
n − 1 to Level n, a few very subtle places can finally be conveyed. Intuitively, as
we go to a higher and higher level, the portion of new information conveyable by
this new level decreases. It is therefore reasonable to us Zipf’s law to describe these
portions as well: if we denote the portion that can be conveyed on Level 1 by p, then
the new portion whose conveyance becomes possible on Level 2 is approximately

equal to
p

2
, the new portion whose conveyance has become possible on Level 3 is

approximately equal to
p

3
, etc.

So, if we use Level k to write our paper, then the portion of information conveyed
by this paper can be obtained by adding up all the portions corresponding to Levels
1 through k and is, thus, proportional to the sum
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1 + 1

2
+ 1

3
+ . . . + 1

k
. (3)

So what is the overall impact of the paper: towards the final formula. If we write
a paper on Level k, then the portion of information that we convey is limited by folks
on this level or higher. The overall impact-per-piece of information of all these folks
can be obtained by adding the impacts (2) corresponding to Levels k through n:

1

k · (n + 1 − k)
+ 1

(k + 1) · (n − k)
+ . . . + 1

n · 1 . (4)

Thus, the overall effect E of the paper can be obtained by multiplying the amount
(3) of conveyed information and the impact (4) per piece of information:

E =
(
1 + 1

2
+ 1

3
+ . . . + 1

k

)
·
(

1

k · (n + 1 − k)
+ 1

(k + 1) · (n − k)
+ . . . + 1

n · 1
)
.

(5)

What we will do. We will find the level k for which the effect E of the paper is the
largest.

3 So Which Level Is Optimal: Towards the Answer

Simplification. To simplify the expression (3), let us introduce a special notation for
the first factor in the expression (5):

Sk
def= 1 + 1

2
+ 1

3
+ . . . + 1

k
. (6)

The second factor in the expression (5) can also be represented in terms of the
values Si if we take into account that for every i , we have

1

i
+ 1

n + 1 − i
= n + 1

i · (n + 1 − i)
.

Thus,
1

i · (n + 1 − i)
= 1

n + 1
·
(
1

i
+ 1

n + 1 − i

)
.

So, the sum (4) can be reformulated as
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1

n + 1
·
(
1

k
+ . . . + 1

n
+ 1

1
+ . . . + 1

n + 1 − k

)
= 1

n + 1
· (Sn − Sk−1 + Sn+1−k).

So, the expression (5) takes the form

E = 1

n + 1
· Sk · (Sn − Sk−1 + Sn+1−k).

Maximizing this expression is equivalent to maximizing the same expression but
multiplied by n + 1. So, we arrive at the following conclusion.

Resulting simplified problem. To find the optimal level k, we must maximize the
expression

Mk
def= Sk · (Sn − Sk−1 + Sn+1−k), (7)

where Si is described by the formula (6).

Examples. When we write on the most basic level, we get S1 = 1, Sn ≈ 3 and thus,

M1 ≈ 6.

When we write on the most sophisticated level, we get

Mn = S20 · 1
n

≈ 3.0 · 1

20
= 0.15.

Computations show that the valueMk is the largest for k = 5, inwhich caseMk ≈ 8.4.
This effect is 40% higher than when writing on the most primitive Level 1, and more
than 50 times higher than writing on the most sophisticated level.

Discussion. Of course, Zipf’s law is only approximately true, so the actual optimal
level may be k = 4 or k = 6. However, in all these cases, we can make the following
conclusion.

Conclusion. To achieve the largest possible effect, a research paper must be written
on the level k ≈ 5, crudely speaking corresponding to the middle school. This will
drastically increase the effect in comparison with using the most sophisticated level.

Comment. In other words, in an argument between us and folks from the English
department, both are wrong: if we want maximal efficiency, we should not use the
most primitive level and we should not use the most sophisticated level. Instead, we
should use an appropriate level in between. A consolation for us is that since this
optimal Level 5 is closer to the most primitive Level 1 than to the most sophisticated
Level 20, we were kind of closer to the truth.)
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How to Select Typical Objects

Mariana Benitez, Jeffrey Weidner, and Vladik Kreinovich

Abstract In many practical situations, we have a large number of objects, too many
to be able to thoroughly analyze each of them. To get a general understanding, we
need to select a representative sample. For us, this problem was motivated by the
need to analyze the possible effect of an earthquake on building in El Paso, Texas.
In this paper, we provide a reasonable formalization of this problem, and provide a
feasible algorithm for solving thus formalized problem.

1 Formulation of the Problem

General problem.We have a large number of objects N . Each object is characterized
by the values of q quantities. Let us denote the value of the j-th quantity for the i-th
object by vi j . Then, the object i is characterized by a tuple

vi = (vi,1, . . . , vi,q).

We can only thoroughly process n � N objects. We therefore want to select n
out of N objects so that the resulting sample of n objects be the most representative;
see, e.g., [2].

Case study. We are interested in possible effect of an earthquake on buildings in El
Paso, Texas—a potentially seismic area in which, however, earthquakes have been
very rare. There are many thousands of buildings in El Paso, it is not realistic to
thoroughly analyze each of them. So, we need to select a feasible-to-analyze sample.
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For this problem, each building is characterized by 4 parameters: occupancy, age
(i.e., equivalently, year of construction), number of stories, and height.

2 Main Idea and How We Can Implement It

In the general case, we want to make sure that each object is similar to one of the
selected objects. How can we describe this similarity? In general, the q quantities
have different effect on the properties that we want to analyze: a difference of one
unit in one quantity may affects this property much more than a difference in 1 unit
in some other quantity.

For example, in our case study, the 1 year difference in the building’s age will
have practically no effect on the building’s stability against a strong earthquake, but
a difference in 1 story can drastically change this stability—e.g., if we consider the
difference between 1-story and 2-story buildings.

To take this into account, it makes sense to “equalize” these quantities. For exam-
ple, if the effect of adding 1 story is roughly equivalent to the effect of addingw years
to the age, this means that adding s stories is equivalent to adding w · s years. We
can estimate similar “weights” for other quantities, so that for the correspondingly
equalized quantities

ei, j
def= w j · qi, j (1)

the unit change in each of these quantities has approximately the same effect on
the property of interest. In the following text, we will assume that the values of the
weights have been found, and that the values of the quantities have already been
equalized. In these terms, each object i is characterized by the tuple

ei = (ei,1, . . . , ei,q).

In geometric terms, each tuple ei can be represented as a point in a q-dimensional
space. So, to describe the degree of dissimilarity between the two objects i and
i ′ characterized by the tuples ei = (ei,1, . . . , ei,q) and ei ′ = (ei ′,1, . . . , ei ′,q), it is
reasonable to take the distance between these two q-dimensional points, i.e. the
value

d(ei , ei ′)
def=

√
√
√
√

q
∑

j=1

(ei, j − ei ′, j )2.

Our goal is to select, among N given objects 1, . . . , N , n typical objects
t (1), . . . , t (n). Once we have selected them, then, for each object i , as its approx-
imate representation, we will take the typical object t (n(i)) which is the closest to
the object i , i.e., for which the distance to the i-th object is the smallest:
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d(ei , et (n(i))) = min
k=1,...,n

d(ei , et (k)).

In general, the distance is the smallest if and only if the square of the distance is the
smallest, so

d2(ei , et (n(i))) = min
k=1,...,n

d2(ei , et (k)). (1)

We want to make sure that for each object i and for each (equalized) quantity j ,
the values of this quantity for the original object i and for the approximating typical
object t (n(i)) be close, i.e., that we should have ei, j ≈ et (n(i)), j . In other words, we
want to make sure that following approximate equalities hold:

e1,1 ≈ et (n(1)),1, . . . , e1,q ≈ et (n(1)),q ,

. . .

eN ,1 ≈ et (n(N )),1, . . . , eN ,q ≈ et (n(N )),q .

We want these approximate equalities to be as accurate as possible. This means that
the distance between the tuple

� = (e1,1, . . . , e1,q , . . . , eN ,1, . . . , eN ,q)

formed by all the left-hand sides and the tuple

r = (et (n(1)),1, . . . , et (n(1)),q , . . . , et (n(N )),1, . . . , et (n(N )),q)

formed by all the right-hand sides should be as small as possible. As we have men-
tioned, the distance is the smallest if and only if the square of the distance is the
smallest. Thus, we must select the typical values t1, . . . , tn for which the value

(e1,1 − et (n(1)),1)
2 + . . . + (e1,q − et (n(1)),q)

2+

. . . +

(eN ,1 − et (n(N )),1)
2 + . . . + (eN ,q − et (n(N )),q)

2

is the smallest possible. The sum

(e1,1 − et (n(1)),1)
2 + . . . + (e1,q − et (n(1)),q)

2

of the first q terms in this expression is simply the square d2(e1, et (n(1)) of the distance
between the tuples e1 and et (n(1)). Similarly, the sum of the next q terms is the square
d2(e2, et (n(2)) of the distance between the tuples e2 and et (n(2)), etc. So, the overall
expression that we want to minimize has the form
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N
∑

i=1

d2(ei , et (n(i)).

In view of the formula (1), this expression takes the form

N
∑

i=1

min
k

d2(ei , ck), (2)

where we denoted ck
def= et (k).

Minimizing this expression is exactly the problem solved by k-means clustering
(see, e.g., [1]),where each ck is called the center of the k-th cluster. Theonlydifference
between the k-means and our problem is that:

• in the k-means clustering, we can take any point ck , while
• in our problem, ck must be one of the original points ei .

Thus, after we apply the k-means clustering algorithm and get the resulting values
ck , then, for each k, we must find the point t (k) which is the closest to ck :

d(et (k), ck) = min
i

d(ei , ck).

So, we arrive at the following algorithm.

3 Resulting Algorithm

We start with N objects i = 1, . . . , N characterized by tuples vi = (vi,1, . . . , vi,q).
Among these objects, for some pre-defined value n, we want to select n most repre-
sentative ones. To do this, we use the following algorithm:

• first, for each of q quantities j = 1, . . . , q, we find the “equalizing” weight w j ,
i.e., the weight such that the effect of adding 1 unit to quantity j is equivalent to
the effect of adding w j units to the quantity 1;

• then, we use the weights w j to equalize all the values vi, j into the values ei, j =
w j · vi, j ; this way, we get N tuples ei = (ei,1, . . . , e1,q);

• next, we apply the k-means algorithm to these N tuples and find the centers
c1, . . . , cn of the corresponding clusters;

• finally, for each k from 1 to n, we find the original tuple closest to this ck , i.e., the
tuple et (k) for which the distance d(et (k), ck) is the smallest possible.

As the resulting “most representative” set of n objects, we select the objects

t (1), . . . , t (n).
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Comment. In addition to “typical” objects, we may also want to select one or more
extreme objects—to make sure that we do not miss the objects for which the effect
is expected to be the largest.

For example, in the earthquake-analysis case, in which the effect increases with
an increase in each of the values vi, j , we may want to consider the building with the
largest possible value of the corresponding weighted sum

∑

j w j · vi, j .
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Why Homogeneous Membranes Lead
to Optimal Water Desalination:
A Possible Explanation

Julio Urenda, Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich

Abstract A recent experiment has shown that out of all possible biological mem-
branes, homogeneous ones proved the most efficient water desalination. In this
paper, we show that natural symmetry ideas lead to a theoretical explanation for this
empirical fact.

1 Formulation of the Problem

Membranes. One of the most efficient desalinization techniques is the use of bio-
logical membranes.

Whatwasbelievedandwhat turnedout. Traditionally, researchers believed that the
efficiency of amembrane is determined by the average values of relevant quantities—
such as the average density of the proteins forming the membrane.

It was known that the knowledge of all these average values enables us to only
approximately estimate the membrane’s efficiency: two membranes with the same
average values of the corresponding quantities may have somewhat different effi-
ciencies.

A recent paper used innovative nano-imaging and nano-manipulating techniques
to analyze and control the nano-structure of different membranes. The resulting anal-
ysis shows that the difference between efficiencies of different membranes with the
same average values of the relevant quantities can be explained by the fact that dif-
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ferent membranes have different degrees of homogeneity: specifically, homogenized
membranes can be 50% more efficient than the usual non-homogeneous ones [1].

How this phenomenon is explained. According to [1], the newly observed phe-
nomenon can be explained by the fact that density fluctuations are detrimental to
water transport. This paper also mentions that there may be other factors affecting
this phenomenon.

What we do in this paper. In this paper, we provide a general symmetry-based
explanation for the observed phenomenon.

2 Towards a Precise Formulation of the Problem

What does optimal mean: general reminder. In simple situations, when the qual-
ity of an alternative can be described by a single number, optimization is usually
straightforward: we select the alternative for which this number is the largest. In
many practical cases, however, the situation is more complicated, we have several
different numerical characteristics that need to be taken into account.

What is common is all such cases is that we should be able to decide, given two
alternatives a and b:

• whether the alternative a is better; we will denote it by b < a,
• or the alternative b is better: a < b,
• or these two alternatives are of the same quality to the users; we will denote it by

a ∼ b.

We can combine these two relations into a single preference relation a ≤ bmean-
ing that either b is better than a or b has the same quality as a. Once we know this
combined relation:

• we can reconstruct a ∼ b as (a ≤ b)& (b ≤ a), and
• we can reconstruct a < b as (a ≤ b)& (b �≤ a).

Clearly, a ≤ a for all a, i.e., the relation ≤ must be reflexive. Also, if a ≤ b and
b ≤ c, then we should have a ≤ c, i.e., the relation ≤ should be transitive.

Preference relation should be final. In general, for a given preference relation, we
may have several different alternatives which are optimal—in the sense that they
are better than (or of the same quality as) any other alternative. For example, we
may have several different membranes that are all equally efficient in terms of water
desalination. In this case, we can use this non-uniqueness to optimize something
else—e.g., select the membrane with the lowest cost or with the longest expected
life.

From the mathematical viewpoint, this means that we replace the original prefer-
ence relation ≤ with a new one ≤′ in which a ≤′ b if and only if:
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• either a < b,
• or a ∼ b and a ≤1 b for the additional criterion ≤1.

If after that, we still have several optimal alternatives, we can use this non-
uniqueness to optimize something else, etc., until we finally get a final preference
relation—for which there is only one optimal alternative.

Preference relation should be invariant with respect to natural symmetries. In
many practical situations, there are natural symmetries, i.e., natural transformations
with respect to which the physical situation does not change. For example, if I drop a
pen, it will fall down with the acceleration of 9.81 m/s2. If I move to another location
and repeat the same experiment, I get the same result. In this sense, the situation does
not change with shift. Similarly, if I rotate myself by 90◦ and repeat the experiment,
I get the same result, so the situation is invariant with respect to rotations too.

For the membrane, a natural transformation is shift: if we move from one loca-
tion of the membrane to another one, nothing should change—since all the related
processes are local.

If there is a transformation T that does not change the physical situation, then it
is reasonable to require that it should not change our preference relation: i.e., if we
had a ≤ b for some alternatives a and b, then for the transformed alternatives Ta
and Tb, we should also have Ta ≤ Tb.

Now, we are ready to formulate the problem in precise terms.

3 Formulation of the Problem in Precise Terms
and the Resulting Explanation

Definition 1 Let A be a set. Its elements will be called alternatives.

• By a preference relation on the set A, we mean a reflexive and transitive binary
relation ≤.

• We say that an alternative aopt is optimal with respect to a preference relation ≤ if
a ≤ aopt for all a ∈ A.

• We say that a preference relation is final if there exists exactly one alternative
which is optimal with respect to this relation.

Definition 2 Let T : A → A be an invertible transformation.

• We say that an alternative a is T -invariant if T (a) = a.
• We say that the preference relation ≤ is T -invariant if for every two alternatives
a and b, a ≤ b if and only if T (a) ≤ T (b).
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Proposition 1 For every final T -invariant preference relation, the optimal alterna-
tive aopt is also T -invariant.

Corollary In our case, since the physical situation does not change with shift, it is
reasonable to assume that the preference relation should also be invariant with respect
to shift. Thus, due to Proposition, we conclude that the optimal membrane should
also not change if we shift from one point to another. Since every two locations can be
transformed into eachother by an appropriate shift, thismeans that the values of all the
corresponding quantities—including density—should be the same at all the locations.
In otherwords, thismeans that the optimalmembrane should be homogeneous,which
is exactly what the experiments show. Thus, we have indeed showed that natural
symmetry requirements explain the latest experimental results.

Proof The main idea of this proof first appeared in [2].

Let ≤ be a final and T -invariant preference relation, and let aopt be the alternative
which is optimal with respect to this relation. This means that a ≤ aopt for all a ∈ A.
In particular, we have T−1(a) ≤ aopt, where T−1 denotes the inverse function to
T (a): b = T−1(a) if and only if a = T (b).

Then, due to T -invariance, we conclude that T (T−1(a)) ≤ T (aopt), i.e., that a ≤
T (aopt). This is true for all a, so, by definition of an optimal alternative, the alternative
T (aopt) is optimal. However, the preference relation ≤ is final. This means that there
exists only one optimal alternative. Therefore, T (aopt) = aopt. Thus, the optimal
alternative aopt is indeed T -invariant.

The proposition is proven.
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Fault Detection in a Smart Electric Grid:
Geometric Analysis

Hector Reyes, Dillon Trinh, and Vladik Kreinovich

Abstract The main idea behind a smart grid is to equip the grid with a dense lattice
of sensors monitoring the state of the grid. If there is a fault, the sensors closer to
the fault will detect larger deviations from the normal readings that sensors that are
farther away. In this paper, we show that this fact can be used to locate the fault with
high accuracy.

1 What Is a Smart Electric Grid

The main idea is to set up a lattice of sensors that would monitor the electric grid;
see, e.g., [1]. Based on the measurement results provided by the sensors:

• we would get a good picture of the current state of the grid, and
• we would be able to effectively control it.
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2 How the Grid of Sensors Can Detect Faults

Each sensor measures characteristics of the electric current at its location. Each fault
affects all the sensors, some more, some less.

By observing the changes in the sensor signals, we can detect the existence of the
fault. We can also get some information of the fault’s location.

Sensors closer to the fault’s location will detect a stronger change in their mea-
surements results than sensors which are further away. Thus, by comparing the mea-
surement results of the two sensors, we can decide whether the fault is:

• closer to the first sensor or
• closer to the second sensor.

3 Let Us Describe This Situation in Precise Terms

Let us consider the case when the sensors form a (potentially infinite) rectangular
lattice. For simplicity of analysis, let us select a coordinate system in which:

• the location of one the sensors is the starting point (0, 0), and
• the distance between the closest sensors is used as a measuring unit.

In this coordinate system, sensors are located at all the points (a, b) with integer
coordinates.
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−1 0 1 2

−1

1

2

These sensors divide the plane into squares [a, a + 1] × [b, b + 1].

Each spatial location (x, y) is in one of these squares:
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(x,y)

One can easily check that:

• for each spatial location within a square,
• the vertices (a, b), (a, b + 1), (a + 1, b), and (a + 1, b + 1) of this square are the
closest grid points.

Thus:

• by finding the 4 sensors at which the disturbance signal is the strongest,
• we can find the square that contains the location of the fault.

(x,y)
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4 Research Question

Can we determine the location of the fault more accurately than “somewhere in the
square”?

5 Our Answer

We show that, in principle:

• by using the lattice of sensors,
• we can locate the fault with any desired accuracy.

Indeed, without losing generality, let us assume that the square containing the fault
is the square [0, 1] × [0, 1]. In other words, we know that the coordinates (x, y) of
the fault satisfy the inequalities 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

For each pair of positive integers (p, q), we can check whether

• the sensor at (p,−q) gets a stronger signal than
• the sensor at (−p, q).

(x,y)

(0,0)

(−1,2)?

(1,−2)?
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The first sensor’s signal is stronger if and only if:

• the squared distance d2( f, s1) = (x − p)2 + (y − (−q))2 between the fault f and
the first sensor s1 is smaller than

• the squared distance d2( f, s2) = (x − (−p))2 + (y − q)2 to the second sensor.

One can check that d2( f, s1) < d2( f, s2) if and only if q · y < p · x , i.e., if and only
if y

x
<

p

q
.

A real number can be uniquely determined if we know:

• which rational numbers p/q are smaller than this number and
• which are larger.

Thus:

• by comparing signals from different sensors,

• we can determine the ratio r
def= y/x with any given accuracy.

Hence, we can determine the line y = r · x going through (0, 0) that contains the
fault:

(x,y)

(0,0) (1,0)

(0,1) (1,1)

Similarly, we can find a straight line going through the point (1, 1) that contains the
fault. Thus:

• the fault’s location can be uniquely determined
• as the intersection of these two straight lines.
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(x,y)

(0,0) (1,0)

(0,1) (1,1)
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Why Geological Regions?

Daniela Flores, Olga Kosheleva, and Vladik Kreinovich

Abstract In most practical applications, we approximate the spatial dependence by
smooth functions. The main exception is geosciences, where, to describe, e.g., how
the density depends on depth and/or on spatial location, geophysicists divide the area
into regions on each of which the corresponding quantity is approximately constant.
In this paper, we provide a possible explanation for this difference.

1 Formulation of the Problem

In many practical problems, we want to describe how the value of some quantity q
depends on the 2D or 3D spatial location x . This can be the description:

• of an electromagnetic field or
• of the state of the atmosphere

In most such situations, we use smooth (differentiable) functions to describe the
dependence q(x). However, in geological sciences, the usual description consists of
dividing the spatial area into geological regions. These are zones in each of which
the value q is assumed to be constant.

Sowhy, in geosciences, this different approximating approach ismore successful?
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2 Our Idea

In general, a natural way to describe an unknown function is to select an orthonormal
basis e1(x), e2(x), …Then, each function q(x) can be represented as

q(x) =
∞∑

i=1

ci · ei (x),

where ci = ∫
q(x) · ei (x) dx . So, with any desired accuracy, we can approximate

the function q(x) as

q(x) ≈
n∑

i=1

ci · ei (x),

for a sufficiently large n.
In practice, we only know approximate values q̃(x) ≈ q(x). So we get

q̃(x) ≈
n∑

i=1

c̃i · ei (x),

where c̃i = ∫
q̃(x) · ei (x) dx .

We want to select the basis ei (x) for which this approximation is as accurate as
possible. How can we measure this accuracy?

3 How Can We Measure Approximation Accuracy: Usual
Case

How can we measure approximation accuracy? This depends on the application.
In weather prediction, we are not trying to predict the temperature or the wind

speed at every single location in the city. Understandably:

• some areas will be more windy, some less windy,
• some slightly warmer, some slightly colder.

What we want to predict is average temperature over some area, average wind speed,
etc.

In such situations, a reasonable measure of accuracy is the usual “average” (mean
square) difference

∫
(q(x) − q̃(x))2 dx .



Why Geological Regions? 105

4 Geosciences are Different

In contrast, in geosciences, we are usually interested in specific locations.

• It is useless to learn that on average, the area contains some oil. We want to know
where exactly is this oil.

• It makes sense to predict the weather in Southern California in general. However,
it would be useless to just say that this is a seismic zone. We want to know which
areas are more vulnerable to future earthquakes.

In all these cases, we want to make sure that the value q(x) at each location x is
accurately approximated, with some accuracy ε > 0.

5 The Resulting Explanation: Formulation of the Result

We want to make sure that the sum of the terms c̃i · ei (x) approximates the sum of
the terms ci · ei (x). It is reasonable to require that each term c̃i · ei (x) is as close to
the corresponding ideal term ci · ei (x) as possible.

In other words, we want to minimize the worst-case approximation error

A
def= max

x,q(x),̃q(x)
|̃ci · ei (x) − ci · ei (x)|.

Here:

• we denoted ci = ∫
q(x) · ei (x) dx and c̃i = ∫

q̃(x) · ei (x) dx , and
• the maximum is taken over all the functions q(x) and q̃(x) for which, for all x ,
we have

|̃q(x) − q(x)| ≤ ε.

It turns out that the smallest value of this worst-case approximation error A is attained
when the function ei (x) is piece-wise constant.

This explainswhy such an approximation—corresponding togeological regions—
is indeed very effective in geosciences.

6 Proof

We want to minimize the expression

A
def= max

x,q(x),̃q(x)
|̃ci · ei (x) − ci · ei (x)|.
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Here, c̃i · ei (x) − ci · ei (x) = �ci · ei (x), where

�ci
def= c̃i − ci =

∫
�q(x) · ei (x) dx and �q(x)

def= q̃(x) − q(x).

Thus,
A = max

x,�q(x)
|�ci · ei (x)| = max

x,�q(x)
(|�ci | · |ei (x)|) .

The only condition on �q(x) is that |�q(x)| ≤ ε.
The maximized expression |�ci | · |ei (x)| is the product of two terms:

• the term |�ci | only depends on �q(x), and
• the term |ei (x)| only depends on x .

Thus,

A =
(
max
�q(x)

|�ci |
)

·
(
max

y
|ei (y)|

)
.

The largest value of the sum�ci = ∫
�q(x) · ei (x) dx is attainedwhen each term

�q(x) · ei (x) is the largest.
• When ei (x) ≥ 0, maximum is attained when�q(x) is the largest�q(x) = ε, then

�q(x) · ei (x) = ε · ei (x).
• When ei (x) ≤ 0, maximum is attained when �q(x) is the smallest �q(x) = −ε,
then �q(x) · ei (x) = −ε · ei (x).

In both cases, the largest value is equal to ε · |ei (x)|. Thus:

max
�q(x)

|�ci | = max
�q(x)

∣∣∣∣
∫

�q(x) · ei (x) dx
∣∣∣∣ =

∫
ε · |ei (x)| dx = ε ·

∫
|ei (x)| dx .

So,

A = ε ·
(∫

|ei (x)| dx
)

· max
y

|ei (y)|.

Minimizing A is equivalent to minimizing

J
def= A

ε
=

(∫
|ei (x)| dx

)
· max

y
|ei (y)|.

The functions ei (x) are orthonormal, so

∫
e2i (x) dx =

∫
|ei (x)| · |ei (x)| dx = 1.

For each x , we have |ei (x)| ≤ max
y

|ei (y)|. So:
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1 =
∫

|ei (x)| · |ei (x)| dx ≤
∫ (

max
y

|ei (y)|
)

· |ei (x)| dx =

max
y

|ei (y)| ·
∫

|ei (x)| dx = J.

If at least for one x , we have |ei (x)| · |ei (x)| <

(
max

y
|ei (y)|

)
· |ei (x)|, then 1 < J .

The smallest possible value J = 1 is therefore attained if for all x , we have:

|ei (x)| · |ei (x)| =
(
max

y
|ei (y)|

)
· |ei (x)|. (1)

• If |ei (x)| = 0, the equality (1) is satisfied.
• If |ei (x)| �= 0, then we can divide both side of the equality (1) by |ei (x)| and get

|ei (x)| = max
y

|ei (y)|.

So, for each x , the value of ei (x) is:

• either equal to 0,
• or equal to ±max

y
|ei (y)|.

Thus, the optimal function ei (x) is indeed piecewise-constant. The statement is
proven.

Comment. Ideas of this proof are similar to the ideas from [1].
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Applications to Machine Learning



Why, in Deep Learning, Non-smooth
Activation Function Works Better Than
Smooth Ones

Daniel Cruz, Ricardo Godoy, and Vladik Kreinovich

Abstract Since in the physical world, most dependencies are smooth (differen-
tiable), traditionally, smooth functionswere used to approximate these dependencies.
In particular, neural networks used smooth activation functions such as the sigmoid
function. However, the successes of deep learning showed that in many cases, non-
smooth activation functions likemax(0, z)workmuchbetter. In this paper,we explain
why in many cases, non-smooth approximating functions often work better—even
when the approximated dependence is smooth.

1 Formulation of the Problem

The world is mostly smooth. In the physical world, most dependencies are smooth
(differentiable)—phasetransitionsandexplosionsareafewexceptions;see,e.g.,[4, 9].

Because of this, we usually try smooth models. Because most real-life dependen-
cies are smooth, a reasonable idea is to fit data with smooth dependencies.

In particular, this applies to machine learning, especially to neural networks. In a
neural network, we intertwine linear combinations

y = c0 + c1 · x1 + . . . + cn · xn
and non-linear steps, where the input signal z is transformed into an output s(z) for
some non-linear functions s(z). This non-linear function is known as the activation
function.
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Any linear function is, of course, always differentiable. So, to make sure that
everything is differentiable, we need to make sure that the activation function is
smooth. This is exactly what researchers did in the neural networks until the last
decade, when they used smooth activation functions, e.g., the sigmoid function

s(z) = 1

1 + exp(−z)
;

see, e.g., [1].

Surprisingly, a not-everywhere-smooth function works much better. However,
now it turned out that much better results are obtained when we use non-smooth
activation functions such as rectified linear function

s(z) = max(0, z)

which is not differentiable at the point z = 0; see, e.g., [6].

But why? Why are non-smooth functions better—even if we approximate a smooth
dependence?

Some explanations for why rectified linear activation function works better are
possible; see, e.g., [5, 7]. However, this explanation is purely mathematical, it does
not provide a clear explanation ofwhy non-smooth functionswork better than smooth
ones.

2 Our Explanation

Decision making—the ultimate goal of science and engineering. One of the ulti-
mate goals of all human activities is to make decisions. This is why we predict
weather: we want to decide what to wear tomorrow. This is why we study nuclear
physics—we want to find new isotopes for medical applications, new ways to gen-
erate and store energy, etc.

From this viewpoint, instead of going into technical details and analyzing how a
function can be approximated, let us start with this ultimate goal, let us start with
decision making.

We will show that already in the simplest case of decision making, we can find
that non-smooth approximations are more efficient.

The simplest case of decision making: majority rule. Most decisions affect several
people. Therefore, when making a decision, we need to take into account the effect
of different possible decisions on different people.

Usually, different people are effected differently: e.g., when we build a plant,
people living near this plant are affected much more than people living reasonably
far way from this plant. In many real-life decision making, we need to take this
difference into account.
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Let us consider the simplest case of decision making, when all people are affected
equally. In this case, the decision on whether to accept a certain proposal or not is
usually decided by the majority rule (also known as voting): if the majority votes for,
the proposal is accepted.

Let us describe the majority rule in precise terms. For simplicity, let us assume
that no one abstains, that everyone votes yes or no. Let us denote the result of the
i-th person’s vote by xi :

• if the i-th person voted “yes”, we take xi = 1, and
• if the i-th person voted “no”, we take xi = −1.

The majority rules y = f (x1, . . . , xn) means that:

• if most people voted for, then we should take y = 1; and
• if most people voted against, then we should take y = −1.

This is the function that we want to approximate.

How can we come up with a smooth approximation? The usual way to approxi-
mate a dependence by a smooth function is to use the fact that sufficiently smooth
functions can be expanded in Taylor series. So, we can take the first few terms in the
corresponding series, and use the resulting polynomial sum as an approximation to
the desired function.

This is the usual practice in physics, where we first use linear approximation,
then—if needed—a quadratic one, etc. [4, 9]. This is how most functions are com-
puted in a computer: e.g., to compute exp(x), we take into account this function’s
Taylor expansion

exp(x) = 1 + x + x2

2! + . . . + xn

n! + . . . ,

and use an approximating polynomial

exp(x) ≈ 1 + x + x2

2! + . . . + xn

n! .

How many computational steps do we need to compute a polynomial? For a
generic linear polynomial

f (x1, . . . , xn) = a0 +
n∑

i=1

ai · xi ,

we need to compute the sum of n terms, so we need O(n) computational steps.
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To compute a generic quadratic polynomial

f (x1, . . . , xn) = a0 +
n∑

i=1

ai · xi +
n∑

i=1

n∑

j=1

ai j · xi · x j ,

we need to compute the sum of O(n2) terms, so we need O(n2) computational steps.
To compute a generic cubic polynomial

f (x1, . . . , xn) = a0 +
n∑

i=1

ai · xi +
n∑

i=1

n∑

j=1

ai j · xi · x j +
n∑

i=1

n∑

j=1

n∑

k=1

ai jk · xi · x j · xk ,

we need to compute the sum of O(n3) terms, so we need O(n3) computational steps.
To compute a generic polynomial of degree d

f (x1, . . . , xn) = a0 +
n∑

i=1

ai · xi + . . . +
n∑

i1=1

. . .

n∑

id=1

ai1...id · xi1 · . . . · xid ,

we need to compute the sum of O(nd) terms, so we need O(nd) computational steps.

How difficult is it to approximate majority rule by a polynomial? It is known [2,
3, 8] that to approximate the majority-rule function f (x1, . . . , xn) by a polynomial,
we need a polynomial of degree d = �(n)—i.e., d ≥ c · n for some c. This means
that we need O(nd) = O(n�(n)), i.e., exponentially many computational steps—
which, for large n, is not practically feasible: for large n, we will need more steps
than the lifetime of the Universe.

What if we use non-smooth approximating functions? If we allow non-smooth
functions like min and max, then we can easily describe the majority rule in a very
simple and easy-to-compute, as

f (x1, . . . , xn) = max(−1,min(x1 + . . . + xn, 1)).

Indeed:

• If most people voted “for”, this means that we have more positive terms xi = 1
than negative terms xi = −1. Thus, the resulting sum x1 + . . . + xn is positive.
Since all the values xi are integers, their sum is also an integer, so it must be a
positive integer. Every positive integer is greater than or equal to 1, so

min(x1 + . . . + xn, 1) = 1.

Thus,
max(−1,min(x1 + . . . + xn, 1)) = max(−1, 1) = 1,
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which is exactly what we want.
• If most people voted “against”, this means that we have more negative terms xi =

−1 than positive terms xi = 1. Thus, the resulting sum x1 + . . . + xn is negative.
Since all the values xi are integers, their sum is also an integer, so it must be a
negative integer. Every negative integer is smaller than or equal to−1, somin(x1 +
. . . + xn, 1) = x1 + . . . + xn and

max(−1,min(x1 + . . . + xn, 1)) = max(−1, x1 + . . . + xn) = −1,

which is exactly what we want.

Conclusion. Already in the very simplest case of decision making, the use of non-
smooth functions drastically decreases the computation time needed for approximat-
ing the desired dependence.
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Why Residual Neural Networks

Sofia Holguin and Vladik Kreinovich

Abstract In the traditional neural networks, the outputs of each layer serve as inputs
to the next layer. It is known that in many cases, it is beneficial to also allow outputs
from pre-previous etc. layers as inputs. Such networks are known as residual. In
this paper, we provide a possible theoretical explanation for the empirical success of
residual neural networks.

1 Formulation of the Problem

What are neural networks: a brief reminder. Lately, neural networks have shown
to be the most efficient machine learning tools; see, e.g., [1]. The basic computations
unit of a neural network is a neuron. It transforms inputs x1, . . . , xn into a value

s(a0 + a1 · x1 + . . . + an · xn) (1)

for some constants ai . Here s(x) is a nonlinear function known as an activation
function. In a neural network:

• some neurons process the inputs,
• some neurons process the results of other neurons.

Usually, neurons form layers:

• neurons from layer 1 process inputs,
• neurons of layer 2 process the results of neurons of layer 1, etc.
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In the last layer, usually, we simply compute a linear combination of the signals from
the previous layer.

What are residual neural networks. Themain idea behind residual neural networks
is that each neuron at layer i can use, as inputs:

• not only the outputs of the previous (i − 1)st layer,
• but also outputs from the layers before it: (i − 2)nd, etc.

Residual neural networks are efficient, but why? Empirically, residual neural
networks are often more efficient than the traditional ones; see, e.g., [1]. In this
paper, we provide a possible theoretical explanation for this efficiency.

2 Our Explanation

Our model. In real life applications, most dependencies are smooth. Functions
describing many smooth dependencies can be expanded in Taylor series. In this
case, the sum of the first few terms in these Taylor series provides a good approxima-
tion to the resulting dependence. This is howmost special functions like exp, sin, etc.
are usually computed. For example, the exponential function is usually computed as

exp(x) ≈ 1 + x + x2

2! + x3

3! + . . . + xn

n! . (2)

The simplest nonlinear approximation is when we take into account only con-
stant, linear, and quadratic terms in the general Taylor expansion. Then, we consider
expressions of the type

f (x1, . . . , xn) = a0 +
n∑

i=1

ai · xi +
n∑

i, j=1

ai j · xi · x j . (3)

This approximation is what we will consider in our model, both:

• in the description of the function that we want to approximate and
• in description of the activation function.

In both cases, we will ignore cubic and higher order terms, and assume that all these
functions are quadratic.

It is sufficient to consider neurons with activation function s(x) = x2. First, we
show that in this approximation, we can replace each neuron by a neuron with s(x) =
x2. This can be done at the expense of changing the coefficients in the corresponding
linear terms a0 + a1 · x1 + . . .
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Indeed, any nonlinear quadratic function of one variable s(x) = a · x2 + b · x +
c, with a �= 0, can be represented as

s(x) = a ·
(
x + b

2a

)2

+
(
c − b2

4a

)
. (4)

Thus, the output
y = s(a0 + a1 · x1 + . . . + an · xn) (5)

of this neuron can be computed by the simple quadratic neuron s(x) = x2 as

y = a ·
((

a0 + b

2a

)
+ a1 · x1 + . . . + an · xn

)2

+
(
c − b2

4a

)
. (6)

Vice versa, for each nonlinear quadratic expression s(x) = a · x2 + b · x + c,
from the formula (4), we conclude that

s

(
x − b

2a

)
= a · x2 +

(
c − b2

4a

)
, (7)

thus

a · x2 = s

(
x − b

2a

)
−

(
c − b2

4a

)
, (8)

and

x2 = 1

a
· s

(
x − b

2a

)
− 1

a
·
(
c − b2

4a

)
. (9)

Thus, the output
y = (a0 + a1 · x1 + . . . + an · xn)2 (10)

of the simple quadratic neuron can be computed by the neuron with activation func-
tion s(x) as

y = 1

a
· s

((
a0 − b

2a

)
+ a1 · x1 + . . . + an · xn

)
− 1

a
·
(
c − b2

4a

)
. (11)

Because of this equivalence, in the following text, we will consider the simplest
quadratic neuron, with activation function s(x) = x2.

In this approximation, one nonlinear layer is sufficient. A general quadratic
expression is a linear combination of terms x2i , xi · x j , xi , and 1. Each of these
terms can be computed by a single layer; indeed:

• Each term x2i can be obtained by a single quadratic neuron.
• Each term xi · x j can be obtained as
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(xi + x j )
2 − (xi − x j )

2

4
. (12)

• Each term xi can be obtained as

(xi + 1)2 − (xi − 1)2

4
. (13)

So one nonlinear layer is sufficient to represent any quadratic expression.

How many neurons we need. Let us denote by k the rank of the matrix ai j . We
can use new coordinates z1, . . . , zn in which coordinate axes are proportional to
eigenvectors. Then, the given quadratic expression takes the form

c0 +
n∑

i=1

ci · zi +
k∑

i=1

cii · z2i . (14)

When k < n, then:

• traditional neural network needs at least k + 1 neurons, since otherwise it cannot
cover terms proportional to zk+1, zk+2, etc., but

• with residual neural network, the above formulas enables us to use only k nonlinear
neurons.

This explains why residual neural networks are more efficient.
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Why Semi-supervised Learning Makes
Sense: A Pedagogical Note

Olga Kosheleva and Vladik Kreinovich

Abstract The main idea behind semi-supervised learning is that when we do not
have enough human-generated labels, we train a machine learning system based on
what we have, and we add the resulting labels (called pseudo-labels) to the training
sample. Interesting, this idea works well, but why is somewhat a mystery: we did
not add any new information so why is this working? There exist explanations for
this empirical phenomenon, but most of these explanations are based on complicated
math. In this paper, we provide a simple intuitive explanation.

1 Formulation of the Problem

Usual (supervised) machine learning. In the usual machine learning, we have
several (K ) objects. Each object k = 1, . . . , K is characterized by parameters
x (k) = (x (k)1 , . . . , x (k)n ). For these objects, we also know the values y(k) of some
characteristics y. In the simplest case, the values y come from a small finite set
Y—e.g., we know which object is a cat and which is a dog. In this discrete cases, the
corresponding values y are called labels.

Based on this information, we want to come up with an algorithm that, given a
new object x = (x1, . . . , xn), will predict the value y corresponding to this object.
This is exactly what many efficient machine learning algorithms do, including deep
learning algorithms [1, 2].

Many such algorithms provide, for each object x , not only the corresponding
label, they also provide a degree to which the system is confident in this label.
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Limitations of supervised machine learning. The more patterns (x (k), y(k)) we
have, the more information we have about the desired dependence, the more accurate
is the resulting algorithm y = f (x1, . . . , xn).

When the values y come from experiments, we can get thousands and even mil-
lions of patterns, and thus reach a high accuracy of the resulting algorithm. The
problem is that in many cases, the values y(k) have to be provided by humans, and so
it is not realistic to expect that many patterns. This is important, e.g., when we teach
a computer to analyze videos or visual schemes. Because the number of patterns is
limited, the resulting accuracy is not so good.

Idea of semi-supervised learning. Since we do have that many labeled patterns,
when we train a machine learning algorithm on whatever labeled patterns we have,
we get a not very accurate description. For some objects x , the system provides the
estimate y with higher degrees of confidence, for some, lower.

The idea of semi-supervised learning is that, after setting some threshold p0, we
assume that all the labels assigned with confidence p0 or higher are correct, and
repeat the training with the correspondingly enlarged set of patterns. To distinguish
the new labels from the ones provided by human experts, the newly added labels are
called pseudo-labels.

We can stop here or, alternatively, after this second training, we can again select
labels assigned with confidence greater than or equal to p0, add them, etc.

Interestingly, this idea works very well; see, e.g., [2].

But why does this idea work? At first glance, the fact that this idea works seems
like magic. We did not add any new expert information, we did not add any new
knowledge about the classified objects, so why does this improve the accuracy?

What we do in this paper. There are rather complicated mathematical explanations
ofwhy this ideaworks. In this paper, we provide a simplermore intuitive explanation.

2 An Explanation

Simplified setting. Our explanation is based on a simple but natural idea: if we have
two classes, e.g., cats and dogs, and a new object is closer to some known cats than
to all known dogs, then it is natural to classify this object as a cat.

Comment. Of course, this is a very simplified version of machine learning, but it is
definitely one of the main ideas behind the discrete case of machine learning.

From this viewpoint, when are wemore confident. From this viewpoint, the larger
the ratio between the distance between this object and the nearest dog and its distance
to the nearest cat, the more confident we are that the new object is a cat.

So what new information do we add? Suppose that originally, we have one sample
cat and one sample dog. Suppose, for simplicity, that all cats are largely alike, while
dogs differ a lot—by size, etc. Then, when we perform a crude first approximation,
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most cats will be correctly classified as cats, but only dogs close in size to the original
dog will be confidently classified as dogs. Let us call them 1st generation.

Whenwe add all cats and all 1st generation dogs as newpatterns and apply training
again, we will get new dogs confidently classified as dogs—namely, those that are
close to dogs of 1st generation. Let us call them 2nd generation. We then add 2nd
generation dogs, etc.

At each point, we add dogs which are somewhat close to dogs from the previ-
ous generation. Any two dogs can be connected by such a sequence of not large
transitions. So, at the end, we get a good classification of all the dogs.

In a nutshell: to the previous sample patterns, we added information about close-
ness: which objects are close to each other. Objects close to objects of known type
are probable to belong to the same type.

Illustrative example.Let us have a simple 1-D example illustrating this explanation.
Suppose that each object is characterize by only one parameter x1, and that we have
two groups of objects:

• the first group (the left one) is spread a lot, while
• in the second group (to the right) all the objects are so close together that they are
practically indistinguishable.

Each object will be denoted by a dashed vertical segment:

• objects from the first group correspond to segments pointed up,
• objects from the second group are marked by segments pointing down.

Objects for which we do not originally know the labels are marked by an interrupted
segments.

Here is our original status.

Suppose that we confidently identify an object as belonging to a class if its distance
to the nearest object from this class is at least twice smaller than its distance to the
nearest object of another class.

In this case, after the first application of machine learning, some objects of the
first class will be correctly classified as such:

However, many other objects from the first class remain unclassified. But now, we
can perform the second iteration, with all newly classified objects as pseudo-labels.
Now, more objects from the first class will be correctly classified:
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A few objects from the first class are still unclassified, but if we apply the same
procedure for the third time, all objects will be correctly classified:

Comment. If we simply classified objects based on their closeness to the original
labels, we would get several objects of the first class misclassified as belonging to
the second class (with one object—as exactly the same distance from both original
labels—left uncertain):
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How to Gauge the Quality
of a Multi-class Classification
When Ground Truth Is Known
with Uncertainty

Ricardo Mendez, Osagumwenro Osaretin, and Vladik Kreinovich

Abstract The usual formulas for gauging the quality of a classification method
assume that we know the ground truth, i.e., that for several objects, we know for sure
to which class they belong. In practice, we often only know this with some degree
of certainty. In this paper, we explain how to take this uncertainty into account when
gauging the quality of a classification method.

1 Formulation of the Problem

Traditional methods of gauging the quality of a classification method assume that
we know the ground truth. In other words, we assume that for some elements, we
know, with certainty, to which class they belong. E.g., in medical diagnostics, we
assume that for some patients, we know, with absolute certainty, what was the correct
diagnosis.

In real life, however, we are rarely absolutely certain. Usually, there is some degree
of uncertainty, some of the “known” classificationmay turn out to be wrong. Because
of this, the values ṽ of the quality measures that we get when we assume the known
classifications to be absolutely true are, in general, different from the ideal values
v—that we would have gotten if we knew the actual ground truth. How can we gauge
the resulting uncertainty in v?
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In the previous papers, this problem was analyzed for the case of 2-class (“yes”–
“no”) classification; see, e.g., [1]. In this paper, we start extending these ideas and
results to the general multi-class case. Specifically, we analyze the uncertainty in
accuracy.

2 Notations: Traditional Approach

Let us introduce the notations needed to describe the traditional methods—that
assume that we know the ground truth.

• Let C denote the number of possible classes.
• Classes will be denoted by numbers c = 1, 2, . . . ,C .
• Let N be the number of objects whose classification we know.
• Let Pc denote the set of all the objects in the cth class.
• Let Sc be the set of all objects that the tested method classifies as belonging to the
cth class.

• By |S|, we denote the number of elements in the set S.

The accuracy A is defined as the proportion of correctly classified objects:

A = M

N
, where M

def=
C

∑

c=1

|Pc ∩ Sc|.

3 Realistic Approach: Formulation of the Problem

In practice, experts are not 100% sure about their classification.

• We have the number ˜N of objects about which experts provided opinions.
• We know the sets ˜Pc of all objects that experts classified to the i th class.
• For each object i , we know the expert’s probability pi that his/her classification
of this object is correct.

Based on the expert opinions, we compute the accuracy as

˜A =

C
∑

c=1
|˜Pc ∩ Sc|

˜N
.

An important question is: how close is this estimate to the actual accuracy A?
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4 Our Solution

Let ξ(i) be 0 or 1 depending on whether the expert’s classification of the i th object
is correct. Then:

• with probability pi , we have ξ(i) = 1, and
• with the remaining probability 1 − pi , we have ξ(i) = 0.

Thus, the mean value and the variance of these variables are

E[ξ(i)] = pi and V [ξ(i)] = pi · (1 − pi ).

In these terms, A = M

N
, where:

N =
˜N

∑

i=1

ξ(i) and M =
C

∑

c=1

|Pc ∩ Sc| =
∑

i∈
C
⋃

c=1
Ec∩Sc

ξ(i).

For large ˜N , a linear combination of a large number of relatively small independent
random variables is, in effect, normally distributed. This follows from the Central
Limit Theorem; see, e.g., [2]. Thus, both N and M are normally distributed. We can
therefore find the distribution of A as the ratio of two random variables M/N with
a joint normal distribution.

A joint normal distribution is uniquely determined by its means, variances, and
covariance. Here:

E[N ] =
˜N

∑

i=1

pi , V [N ] =
˜N

∑

i=1

pi · (1 − pi ),

E[M] =
∑

i∈
C
⋃

c=1
Ec∩Sc

pi , V [M] =
∑

i∈
C
⋃

c=1
Ec∩Sc

pi · (1 − pi ).

Here, N − M andM contain different variables and are, thus, independent. Similarly,
(N − E[N ]) − (M − E[M]) and M − E[M] are also independent, with mean 0.
Thus:

E[((N − E[N ]) − (M − E[M])) · (M − E[M])] =

E[(N − E[N ]) − (M − E[M])] · E[(M − E[M])] = 0.
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Hence, for the covariance, we get

C(N , M)
def= E[(N − E[N ]) · (M − E[M])] =

E[((N − E[N ]) − (M − E[M])) · (M − E[M])] + E[(M − E[M])2] = V [M].
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An AlphaZero-Inspired Approach
to Solving Search Problems

Evgeny Dantsin, Vladik Kreinovich, and Alexander Wolpert

Abstract AlphaZero and its extension MuZero are computer programs that use
machine-learning techniques to play at a superhuman level in chess, go, and a few
other games. They achieved this level of play solely with reinforcement learning
from self-play, without any domain knowledge except the game rules. It is a natural
idea to adapt the methods and techniques used in AlphaZero for solving search
problems such as the Boolean satisfiability problem (in its search version). Given a
search problem, how to represent it for an AlphaZero-inspired solver? What are the
“rules of solving” for this search problem? We describe possible representations in
terms of easy-instance solvers and self-reductions, and we give examples of such
representations for the satisfiability problem. We also describe a version of Monte
Carlo tree search adapted for search problems.

1 Introduction

AlphaZero [10] and its extension MuZero [8] are computer programs developed by
Google’s subsidiary DeepMind. They use machine-learning techniques to play at
a superhuman level in chess, go, and a few other games. AlphaZero achieved this
level of play solely with reinforcement learning from self-play, with no human data,
no handcrafted evaluation functions, and no domain knowledge except the game
rules. In comments on playing chess, the play style of AlphaZero is called “alien”:
it sometimes wins by making moves that would seem unthinkable to a human chess
player.

Thepurpose of this paper is to adapt themethods and techniques used inAlphaZero
for solving search problems such as, for example, the Boolean satisfiability problem
(in its search version). Reinforcement learning has been applied to combinatorial
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optimization [6, 12], but with using expert knowledge and handcrafted heuristics,
which differs these applications from AlphaZero’s approach.

To design an AlphaZero-inspired solver for a search problem �, we first need
to represent � as a one-player combinatorial game, where the player starts from
an initial position and tries to reach a winning position by making moves from one
position to another. That is, we need to define what we mean by positions, winning
positions, and possible moves.

We think of any instance of � as a possible position in the game. For example, if
� is SAT, then any formula in CNF (a set of clauses) is viewed as a position. Certain
instances of � are thought as “easy” instances, assuming that we already have an
efficient solver for such instances. An easy instance plays the role of a winning
position. In the case of SAT, a set of easy instances could contain formulas with the
empty clause, formulas where each clause contains a pure literal, formulas in 2-CNF,
etc. By a possible move we mean a transition from an instance x to an instance x ′
such that the following holds:

• x has a solution if and only if x ′ has a solution;
• a solution to x can be computed from a solution to x ′.

The resolution rule gives examples of possible moves: x ′ is obtained from x by
choosing two clauses and adding their resolvent to x . Another example is the pure
literal elimination rule: x ′ is obtained from x by removing all clauses that contain
pure literals.

Thus, we define the “game rules” for � by specifying two components:

• a set of easy instances and a solver for this restriction of �;
• for each non-easy instance of �, a set of possible moves from this instance.

We call such a specification a setup for solving �. Section2 gives a formal defini-
tion of setups in terms of easy-instance solvers and self-reductions. Section3 gives
examples of setups for SAT.

Suppose we have chosen a setup for solving �. A solver for � based on a given
setup is described in Sect. 4. This solver uses adapted versions of two key algorithms
ofAlphaZero: a reinforcement-learning algorithm and a parameter-adjustment algo-
rithm. The former one usesMonte Carlo tree search to find a sequence of moves from
an input instance of � to an easy instance. This algorithm has many parameters that
are adjusted with help of the latter algorithm. The parameter-adjustment algorithm
trains a deep neural network to find better values of the parameters; the choice of
architecture of this network depends on how we represent instances of �.

The solver described in Sect. 4 can also be applied to another task called per-
instance algorithm selection [4, 5], In this task, we wish to design a “meta-solver”
that solves a search problem � by automatically choosing (on a per-instance basis)
a solver from a “portfolio” of solvers for �, see Sect. 5 for details.
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2 Setups for Solving Search Problems

Search Problems A search problem is one of the standard types of computational
problems. It is common to represent a search problemby abinary relation R ⊆ X × Y
where X is a set of instances and Y is a set of solutions. If (x, y) ∈ R then y is called
a solution to x .

The satisfiability problem (in its search version) is an example of a search problem,
see Sect. 3 for details. The corresponding set X of instances consists of Boolean
formulas in CNF. The set Y of solutions consists of assignments of truth values to
variables. An instance x ∈ X has a solution y ∈ Y if y is a satisfying assignment of x .
There are many ways to encode instances and solutions of the satisfiability problem;
no particular encoding is specified in our example.

Solvers Let� be a search problem. A solver for� is an algorithm S that either finds
a solution, or reports that there is no solution, or may give up saying “don’t know”.
That is, on every instance x ∈ X ,

• if x has a solution, then S returns some solution to x or says “don’t know”;
• if x has no solution, then S says “no solution” or says “don’t know”.

Solvers may have parameters, additional input, and additional output. For example,
in Sect. 4, we describe a solver that takes as input not only an instance x but also
additional data θ with information about previous traces; the solver outputs an answer
for x and updates θ .

Easy Instances We assume that the set of instances of � has a designated subset
E ⊆ X whose elements are called easy instances. The assumption behind E is that
it is “easy”to determine whether an instance x ∈ E has a solution and, moreover,
if a solution exists, it is “easy” to find it. To formalize this assumption, we equip
� with an algorithm denoted by E and called an easy-instance solver. On every
instance x ∈ X , this algorithm determines whether x is an easy instance and, if so,
the algorithm finds a solution to x or reports that x has no solution:

E(x) =
⎧
⎨

⎩

“not easy” if x /∈ E
“no solution” if x ∈ E and x has no solution
some solution to x if x ∈ E and x has a solution

Section3 gives examples of the set E for the satisfiability problem. For example, E
can be the set of formulas φ such that φ is the empty set (this formula is satisfiable)
or φ contains the empty clause (this formula is unsatisfiable).

Self-reductions andMovesWedefine a self-reduction of� to be a pair r = ( fr , gr ),
where fr and gr are computable functions such that for every instance x ∈ X ,

• fr (x) is a finite set of instances;
• if x has a solution, then each instance in fr (x) has a solution;
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• for every instance x ′ ∈ fr (x) and for every solution y ∈ Y , if y is a solution to x ′,
then gr (x, x ′, y) is a solution to x .

If x ′ ∈ fr (x), then we say that the self-reduction r offers a move from x to x ′. Thus,
for each instance, fr defines the set of all moves from this instance. We call fr
the move function of the self-reduction r . For a move from x to x ′, the function gr
computes a solution to x from a solution to x ′ (if any).We call gr the solution function
of r .

Examples of self-reductions of the satisfiability problem are given in Sect. 3. Here
we just mention two of them. The first example is a self-reduction r = ( fr , gr )where
the move function fr is in fact the pure literal elimination rule. This move function
maps a CNF formula φ to a one-element set {φ′}where φ′ is a CNF formula obtained
from φ by successively removing all clauses containing pure literals. Another exam-
ple is a self-reduction r = ( fr , gr ) that uses the resolution rule. For every CNF
formula φ, the set fr (φ) consists of all CNF formulas obtained from φ by choosing
two clauses and adding their resolvent to φ. In both examples, the solution functions
gr are defined in the obvious way, see Sect. 3 for details.

Paths Let R be a finite set of self-reductions of �. Let x and x ′ be instances of �.
By a path from x to x ′ we mean a sequence

x0, r1, x1, r2, x2, . . . , xn−1, rn, xn

where x0 = x , xn = x ′, and ri is a self-reduction from R that offers a move from
xi−1 to xi for all i = 1, . . . , n. Clearly, given such a path, we have the following:

• if x has a solution, then x ′ also has a solution;
• if y is a solution to x ′, then x has a solution that can be computed from y by
successively computing solutions to xn−1, . . . , x1, x0.

Setups for Solving An easy-instance solver E and a finite set R of self-reductions
of � suggest the following approach to solving �:

1. Try to find a path from an input instance x to an easy instance x ′.
2. If such a path is found, either return a solution to x (computed from a solution

to x ′) or return “no solution” (in the event that x ′ has no solution). Otherwise,
return “don’t know”.

The key step here is a search for a path and its success depends on the choice of E
andR. We call the pair (E,R) a setup for solving �. Such a setup allows us to think
of � as a one-player combinatorial game, where the player tries to find a sequence
of moves from an initial position to a winning position. From this point of view, a
setup for solving � defines the rules of this game.

Note that, in general, a setup (E,R) is not required to be “complete” in the
following sense: for every instance x , there must be a path from x to an easy instance.
Section3 shows examples of different setups for solving the satisfiability problem,
including a setupwhere only satisfiable formulas have paths to easy instances. Solvers
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based on “incomplete” setups output “don’t know” on instances that do not have paths
to easy instances.

3 Examples for the Satisfiability Problem

There are many possible setups for solving the satisfiability problem that make sense
in our context. In this section, we give three setups for the purpose of illustration.

SatisfiabilityAlthough the satisfiability problem is verywell known and described in
numerous books and articles [1], we give the basic definitions here to avoid ambiguity
(notation and terminology slightly vary in the literature).

Let V = {v1, v2, . . .} be a set of variables. A literal is a variable from V or
its negation; each of them is the complement of the other. The complement of a
literal a is denoted by ¬a. A clause is a finite set of literals that contains no pair of
complements (a clause is thought of as the disjunction of its literals). A formula is
a finite set of clauses (a formula is thought of as the conjunction of its clauses). An
assignment is usually defined as a function from a finite set of variables to {0, 1}, but
it is convenient for us to use an equivalent definition: an assignment is a finite set
of literals without any pair of complements (this set is thought of as the conjunction
of its literals). An assignment α satisfies a clause C if the intersection α ∩ C is not
empty. An assignment α satisfies a formula φ if α satisfies every clause of φ; we also
call α a satisfying assignment for φ.

The definitions above allow the empty clause and the empty formula. No assign-
ment satisfies the empty clause and, thus, every formula with the empty clause is
unsatisfiable. The formula consisting of only the empty clause is denoted by ⊥. The
empty formula (“no constraints at all”) is denoted by �. By definition, � is satisfied
by the empty assignment.

It is common to denote the following decision problem by SAT: given a formula
φ, does it have a satisfying assignment? Slightly abusing this notation, we write SAT
to refer to the satisfiability problem in its search version: given a formula φ, find a
satisfying assignment or return “no solution”. In terms of Sect. 2, this search version
is defined as follows. The set X of instances consists of all formulas over V . The set
Y of solutions consists of all possible assignments, i.e., all finite subsets of literals
over V without any pair of complements. An assignment α ∈ Y is a solution to an
instance φ ∈ X if and only if α satisfies φ.

Example 1: Setup Based on Resolutions There are only two easy instances: � and
⊥. Thus, an empty-instance solver E is trivial. A setR of self-reductions consists of
the following three self-reductions commonly used in SAT solving:

• Resolution rule. Let φ be a formula with clausesC1 andC2 such thatC1 contains a
literal a andC2 contains its complement¬a. If the setC1 ∪ C2 − {a,¬a} contains
no pair of complements, then we call this set the resolvent of C1 and C2. If φ′ is
the formula obtained from φ by adding this resolvent, we say that φ′ is obtained
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from φ by the resolution rule. The resolution self-reduction is a pair r = ( fr , gr )
where the move function is defined by

fr (φ) = {φ′ | φ′ is obtained from φ by the resolution rule}

and the solution function gr is defined as follows: for all formulas φ, if α is a
solution to a formula φ′ ∈ fr (φ) then gr (φ, φ′, α) is α.

• Subsumption rule. If a clause C1 is a proper subset of a clause C2, we say that
C1 is subsumed by C2 and we call the clause C2 unnecessary. The subsumption
self-reduction is the following self-reduction r = ( fr , gr ). The move function fr
maps a formula φ to a one-element set {φ′} where the formula φ′ is obtained
from φ by removing all unnecessary clauses. The solution function gr is obvious:
gr (φ, φ′, α) = α for all φ, φ′, and α.

• Pure literal elimination. A literal a in φ is called a pure literal if no clause of φ

contains¬a. The pure literal self-reduction r = ( fr , gr ) is defined as follows. The
move function fr maps a formula φ to a one-element set {φ′} where φ′ is obtained
from φ by successively removing all clauses containing pure literals until φ′ has
no pure literals. If α is a satisfying assignment for φ′, then gr (φ, φ′, α) is the
extension of α that assigns “true” to all pure literals in φ.

This setup (E,R) is “complete”: for every formula φ, there is a path from φ to either
� or ⊥, see for example [2].

Example 2: Setup Based on Resolutions and the Extension Rule The setup
described above can be extended by adding a self-reduction based on the extension
rule [11]. Let φ be a formula and let v be a variable not appearing in φ: no clause
of φ contains v or ¬v. Let a and b be literals such that their underlying variables
appear in φ. The extension rule adds clauses

{a,¬v}, {b,¬v}, {¬a,¬b, v}

toφ. In the corresponding self-reduction r = ( fr , gr ), themove function fr is defined
by

fr (φ) = {φ′ | φ′ is obtained from φ by the extension rule}

and the solution function gr is the sameas in the resolution self-reduction: gr (φ, φ′, α)

is α.
The extension rule makes resolution proof systems much stronger, but there are

no good heuristics for choosing extension literals a and b. This problem of using
the extension rule in practical SAT solvers is discussed in [2, section 7.8], where the
authors note that “if this could be done well, the gains would be enormous” and “the
main bottleneck appears to be that we have no good heuristics for how to choose
extension formulas”.

Example 3: Setup Based on Flipping A variable is called a positive literal; its
negation is called a negative literal. We define an easy instance to be a formula in
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which every clause has at least one positive literal. Obviously, such a formula is
satisfied by the set of these positive literals. An algorithm E determines whether an
instance φ is an easy instance and if so, E(φ) is the corresponding set of positive
literals. The flipping rule transforms a formula φ taking the following two steps:

1. Choose a clause C ∈ φ in which all literals are negative (if φ is not an easy
instance, such a clause exists).

2. Choose a literal ¬vi ∈ C and “flip” all of its occurrences in φ, i.e., replace ¬vi
with vi everywhere in φ.

We can defineR to be a set of one or more self-reductions based on the flipping rule.
The move function in a such a self-reduction maps φ into a set of formulas obtained
from φ by applying the flipping rule. Note that the setup (E,R) is not “complete”.
If φ is satisfiable, then there is a path from φ to an easy instance. Otherwise, φ has
no path to any easy instance (all easy instances are satisfiable).

4 Solvers Based on Setups

Let (E,R) be a setup for solving a search problem �. We describe a solver for �

based on this setup. This solver, denoted by S, tries to find a path from an input
instance x to an easy instance and, if such a path is found, S outputs an answer for
x . The solver has parameters whose values change from run to run, and S updates
these values itself. The key point is that S uses machine-learning techniques for both
tasks, namely, for a path search and for updating values of the parameters. Roughly,
S uses a reinforcement-learning algorithm A1 to search for a path and it uses a
parameter-adjustment algorithm A2 to search for “better” values of the parameters.
We first describe a bird’s eye view of S and then give more details.

Input and Output The input to S has two parts: and instance x ∈ X and a binary
string θ ∈ {0, 1}∗ called a parameter string. This string encodes values of the param-
eters of S and information about the solver’s previous traces. We assume that θ is
stored in a data store outside S. We also assume that θ is initialized before the first
run of S and it is updated after each next run. Thus, the output of S on x and θ is
an answer for x (either a solution to x , or “no solution”, or “don’t know”) and the
updated parameter string θ ′.

Solver S. On input x and θ , the solver S works as follows:

1. Run A1. This algorithm produces a path

x0, r1, x1, r2, x2, . . . , xn−1, rn, xn (1)

where x0 = x . Note that xn is not necessarily an easy instance. In the course of
producing this path, A1 generates other paths and measures the “quality” of the
moves occurring in these paths: one move is better than another if it is expected
to have a better chance of leading to an easy instance. Information about the
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quality of the moves is stored as quality data δ. The output ofA1 is path (1) and
δ.

2. Return an answer for x :

(a) If E(xn) is “not easy”, then return “don’t know”.
(b) If E(xn) is “no solution”, then return “no solution”.
(c) If E(xn) is a solution to xn , work backwards from xn and use the solution

functions gr fromR to find successively solutions to xn−1, . . . , x0. Finally,
return the solution to x0.

3. RunA2. This algorithm takes δ and merges it with similar quality data collected
in the previous runs of S. The result of merge is used for training and updating
parameters θ to new parameters θ ′.

4. Return the updated parameter string θ ′ for storing.

Reinforcement-learning algorithm A1. This algorithm is a Monte Carlo tree
search algorithm adapted for search problems. More exactly, A1 is a version of the
Adaptive Multistage Sampling algorithm (AMS) described in [3]. The algorithmA1

cannot apply AMS as a black-box algorithm because the input to AMS is not given
explicitly. Instead,A1 supplies the input data in a “just-in-time” manner as follows.

• Initialization of rewards. In each recursive call, AMS initializes rewards of moves.
Given an instance x , the reward of a move is a measure for the belief that this move
is on a bounded-length path from x to an easy instance. The reward is maximum
if the move is on such a path to an easy instance. The algorithm A1 needs a
belief estimation algorithm that computes initial reward values for moves. This
estimation is implemented by a deep neural network N that uses parameters given
in θ . The initial rewards are improved by training this network.

• Sampling algorithm. The algorithm A1 provides a sampling algorithm for AMS.
On an instance x , this algorithm uses the parameters in θ to sample the moves from
fr (x) for each self-reduction r ∈ R. The sampling algorithm can be implemented
using the same deep neural network N , or it can be a different neural network
that shares weights with N . The distributions for self-reductions are improved by
training N , whichmeans that the improved distributions assign higher probabilities
to moves with higher accumulated rewards.

• Output. According to the description of AMS in [3], this algorithm returns a path
that has the maximum accumulated reward. In addition to this optimal path, A1

collect the following quality data δ and returns it for training:

– for every instance x and every self-reduction r explored in the run, the accumu-
lated probability distribution on fr (x);

– for every instance x explored in the run, the accumulated quality of x (“value”
of x in the AMS terminology).

Parameter-adjustment algorithm A2. After taking the quality data δ and merging
it with similar datasets,A2 trains the deep neural network N to adjust the parameters
θ . Note that the choice of architecture of N is dictated by instance representation. For
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example, convolutional neural networks can be used in the case of finite dimensional
tensor representation. If instances are represented by binary strings of variable length,
recurrent neural networks can be used. In the case of SAT, it is natural to represent
instances by graphs and, therefore, N can be implemented as a graph neural network.
In particular an extension of the network constructed in [9] could be used. Also note
that the architecture of N determines what instance features can be discovered from
training.

What datasets can be used for the initial training of N? It is more or less common
to train a neural network using randomly shuffled data. Certain sets of instances (for
example, industrial instances of SAT) expose self-similarity: large instances have
the same properties as smaller ones. In such cases, it makes sense to train N using
curriculum learning [7] where the training starts from samples of small size and
moves to larger ones.

5 Concluding Remark

In this paper, we described how to adapt AlphaZero’s techniques for designing a
solver for a search problem. This adaptation can also be used for another task called
per-instance algorithm selection [4, 5]. In this task, we are given a search problem
� and a “portfolio” of solvers for �. We wish to design a “meta-solver” that auto-
matically chooses a solver from the portfolio on a per-instance basis and, thereby, it
achieves better performance than any single solver from the portfolio.

Suppose all solvers in the portfolio are of the following type. Such a solver takes
as input an instance x of � and produces another instance x ′ such that (1) x ′ has a
solution if and only if x has a solution and (2) a solution to x can be computed from
a solution to x ′. If x ′ is an easy instance then the solver returns an answer, otherwise
the solver returns x ′ and says“don’t know”. Many SAT solvers are of this type, for
example, iterative solvers like resolution-based solvers with a limited number of
iterations. The portfolio with such solvers can be viewed as a self-reduction where
the move function maps an input instance x to the set of all instances x ′ produced by
the solvers. Thus, we can use the solver described in Sect. 4 as a meta-solver for �.
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Fuzzy Techniques, Laplace
Indeterminacy Principle, and Maximum
Entropy Approach Explain Lindy Effect
and Help Avoid Meaningless Infinities
in Physics

Julio Urenda, Sean Aguilar, Olga Kosheleva, and Vladik Kreinovich

Abstract In many real-life situations, the only information that we have about some
quantity S is a lower bound T < S. In such a situation, what is a reasonable esti-
mate for S? For example, we know that a company has survived for T years, and
based on this information, we want to predict for how long it will continue surviv-
ing. At first glance, this is a type of a problem to which we can apply the usual
fuzzy methodology—but unfortunately, a straightforward use of this methodology
leads to a counter-intuitive infinite estimate for S. There is an empirical formula for
such estimation—known as Lindy Effect and first proposed by Benoit Mandelbrot—
according to which the appropriate estimate for S is proportional to T : S = C · T ,
where, with some confidence, the constant C is equal to 2. In this paper, we show
that a deeper analysis of the situation enables fuzzy methodology to lead to a finite
estimate for S, moreover, to an estimate which is in perfect accordance with the
empirical Lindy Effect. Interestingly, a similar idea can help in physics, where also,
in some problems, straightforward computations lead to physically meaningless infi-
nite values.
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1 Formulation of the Problem

What is Lindy Effect. In this paper, we analyze a phenomenon known as Lindy
Effect; see, e.g., [9, 14]. Its main idea—as described later—is intuitively clear, but
its formal description is not that well known, so let us start by describing what is the
Lindy Effect.

Lindy Effect: intuitive idea. If we have a company that has been in successful exis-
tence for many decades and another company which is a recent startup, what are the
chances that each of these companies will survive for another decade? Intuitively, it
is clear that the company that has been successful for many years, that have success-
fully survived many crises, will probably survive for another decade (and probably
even longer), while a start-up has a high risk of not surviving—as most startups do.

This is an important issue if we plan a long-term investment: the stocks of which
of the two companies shall we mostly buy?

If we have a building that has been standing since the 19 century, and another
modernist experimental building built a few years ago, which of them has a better
chance of survival? Clearly, the one that has been standing for more than 100 years
will probably stand some more, while an experimental building, built by using not-
yet-fully-tested technology, is at risk of needing repairs soon.

If we have a family that has recently celebrated its 50th anniversary and another
family whose marriage has just been announced—who has a bigger chance of not
divorcing?

In all these cases, it is quite possible that an old company will crumble while
a startup will turn into a new Microsoft, that an old building will catch fire and
collapse while the new one will persist, that the old couple will divorce after 50 years
of marriage while the newlyweds will live happily even after—but in all these cases,
the opposite is much more frequent.

Why is this called Lindy Effect? This name came from New York’s Lindy’s
Delicatessen, which in the 1960s was a favorite gathering place for New York
comedians—and in those days, this meant the majority of top US comedians. Once
in a while, a new comedian would burst into the stage, so a natural question was:
will he (it was usually a he) last for long? Young people may have believed in every
single newcomer’s success, but more experience folks—who remembered that many
new promising comedians did not last long—would cool down the younger folks’
optimism.

Lindy Effect: towards formalization. In all the above situations—and in many
similar ones:

• we know that some object has already survived for T years, and
• we are trying to predict the amount of time t during which it will most probably
survive in the future as well.

Alternatively, we can say that wewant to predict the overall survival time S
def= T + t .
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If the value T is all we know, then we need to estimate the future value t based
only on this information. Let us denote the corresponding estimate by t = f (T ).
Which function f (T ) should we use for this estimation?

Lindy Effect: qualitative idea. The above informal discussion enables us to con-
clude that the larger survival-so-far time T , the largest should be our estimate
t = f (T ). In otherwords, the desired estimation function f (T ) should be increasing.

However, there are many increasing functions. Which one should we choose?

Lindy Effect: precise formulation(s). The first person who tried to come up with a
precise formula for the Lindy Effect was Benoit Mandelbrot—the father of fractals.
By considering several actual situations, he concluded that the desired dependence
is linear: there exists a constant c > 0 such that if a system survived for T years, it
will, with high probability, survive for another t = c · T years; see, e.g., [9].

Later, Nassim Nicholas Taleb analyzed even more cases and concluded that we
can safely take c = 1 and t = T ; see, e.g., [14]. In plain English, this means that if
a company survived for 100 years, it is reasonable to expect that it will survive for
another 100 years.

Weak and Strong Lindy Effect. We have two versions of Lindy Effect:

• The first version—that t = c · T for some c > 0—is somewhat more accurate,
since we have a parameter here that we can adjust to make a better fit.

• The second version—that t = T—is somewhat less accurate but stronger.

To distinguish between these two formulations, wewill call the dependence t = c · T
a weak Lindy Effect and the dependence t = T the strong Lindy effect.

Why? Both formulations seem to be consistent with data, so they are real. The fact
that they are ubiquitous, that they cover all kinds of phenomena, seems to indicate
that there must be a general first-principles explanation for this effect.

Whatwe do in this paper. In this paper, wewill try to come upwith this explanation.
All this is very imprecise (“fuzzy”), so a natural idea is to try to use fuzzy tech-

niques; see, e.g., [2, 6, 10–12, 16]. On the complications side, we will see that in the
process of these tries, we will encounter a need to somewhat modify the way such
problems are usually described by fuzzy techniques.

The resulting complications will not be fully in vain: they will enable us to come
up with a natural way to avoid meaningless infinities in computations related to
physics.

2 Let Us Use Fuzzy Techniques: A Straightforward
Approach and Why It Does Not Work in This Case

Starightforward approach: idea. At first glance, we have a typical problem of the
type solved by fuzzy techniques—e.g., in fuzzy control. We have rules which are
imprecise—in the sense that by themselves, they do not lead to an exact answer.
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• In the control case, we may have rules like “if x is small, then control should be
small”—which allow many different control values (as long as they are small).

• In our case, all we know is that the overall survival time S should be larger than
the survival-so-far time T . This also allows many different values S—as long as
they are larger than T .

In fuzzy control, the fuzzy methodology means that:

• we describe the knowledge in terms of fuzzy degrees,
• we come up with a fuzzy recommendation, and then
• we apply an appropriate defuzzification procedure to come up with the numerical
recommendation.

Let us try to apply the same idea to our problem.

Straightforward approach: let us try. If all we know is the value T , and the only
thing that we know about the desired value S is that S > T , then the corresponding
membership function μ(S) describing this knowledge is straightforward:

• it assigns μ(S) = 1 to all the values S > T , and
• it assigns μ(S) = 0 to all other values.

So far so good, but the problem starts when we try to apply defuzzification.
The most natural idea is to select the value in which we have most confidence,

i.e., for which the corresponding value of the membership function is the largest. In
our case, this does help at all: the largest value μ(S) = 1 is attained for all numbers
S > T , so this idea does not allow us to select any specific value at all.

OK, this happens in fuzzy control as well. To avoid this non-uniqueness, fuzzy
control applications usually use centroid defuzzification, i.e., transformamembership
function μ(x) into a value

x =
∫

x · μ(x) dx
∫

μ(x) dx
.

Of course, we cannot directly apply this formula to our membership function μ(S),
since for this function, both integrals—in the numerator and in the denominator—are
infinite. However, what we can do is to consider our function μ(S) as the limit of
functions μn(S) which coincide with μ(S) up to S = T + n and are equal to 0 after
that. In the limit n → ∞, the functions μn(S) tend to the desired function μ(S). So,
it makes sense:

• first, to apply defuzzification to each of these functions μn(S), resulting in values
Sn , and

• then use the limit S = lim
n→∞ Sn of the resulting values Sn as the desired estimate

for S.

Unfortunately, this does not work either: for each function μn(S), centroid defuzzi-
fication leads to Sn = T + (n/2), and thus, the limit S = lim

n→∞ Sn = ∞. Mathemat-

ically, it is correct, but it does not convey the meaning that we want: instead of
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saying that a company will survive for c · T more years, this conclusion says that the
company will last forever.

We know that this is not true: many companies do survive for a long time, but
most of them eventually stop functioning. There are not that many companies that
have survived for many centuries: maybe Lloyd insurance is the only one.

3 Let Us Add Common Sense to Mathematics

So what can we do? At first glance, the above negative results may sound like a
paradox that shows limitations of the fuzzy approach.But a deeper analysis shows that
nothing is wrong with fuzzy approach, it is that we relied too much on mathematics
and did not use enough common sense.

Specifically, we naively assumed that μ(S) = 1 for all S > T . Mathematically,
it makes sense, but do we really believe—with confidence 1—that a company that
survived for 100 years will survive for 1000 years more? If you believe this, how
about 1 million years? 1 billion years? Clearly not.

From the viewpoint of common sense, the value of the membership functionμ(S)

describing a seemingly crisp property S > T should not stay constant, but should
instead decrease as S increases.

What is an adequate membership function: analysis of the problem. We are
interested in designing, for each T , a membership function μT (S) that describes our
degree of belief that, once the system has survived for time T , it will survive for a
longer time S ≥ T .

What should be reasonable properties of these functions?
First, we know for sure that the system has survived for time T , so we should

have μT (T ) = 1.
Second, the longer the time S, the smaller is our belief that the systemwill survive

for this time. Thus, for each T , the function μT (S) should be decreasing. We will
call this property monotonicity.

Third, if we originally observed the system surviving for time T , and then later,
it turns out that it has survived for time T ′ > T , this means that from the original
functionμT (S), we should only consider values S ≥ T ′. Of course, since the function
μT (S) is decreasing, the largest remaining value is the valueμT (T ′)which is smaller
than μT (T ) = 1. In fuzzy techniques, we usually consider normalized membership
functions, i.e., functions whose maximum is 1. So, to obtain the appropriate function
μT ′(S), we need to normalize the resulting restriction of the original function μT (S)

to values S ≥ T ′. Normalization is usually performed by dividing all themembership
degrees by the largest one—which, is in this case, is equal to μT (T ′). Thus, we must
have

μT ′(S) = μT (S)

μT (T ′)

for all S ≥ T ′. We will call this property consistency.
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Finally, since we are trying to understand the phenomenon of Lindy Effect, which
is reasonably universal, we want the expressionsμT (S) to be universal. In particular,
it means that this effect should be the same whether we consider micro-objects or
macro-objects or mega-objects (how long will the Sun continue to shine?). The
corresponding membership degrees should thus not change is we simply change the
units in which we measure time. If we replace the original unit of time with the one
which is λ times smaller, then numerical values of both T and S and multiplied by λ:
we get λ · T instead of T and λ · S instead of S. In these terms, universality means
that μλ·T (λ · S) = μT (S).

Definitions and the main result. Now, we are ready to formulate our first result.

Definition 1 By a family of membership functions corresponding to >, we mean
a family of membership functions μT (S) with parameter T > 0 each of which is
defined for all S ≥ T and which satisfy the following properties:

• for each T , we have μT (T ) = 1;
• for each T , the function μT (S) is decreasing with S (monotonicity);
• for each T < T ′ ≤ S, we have

μT ′(S) = μT (S)

μT (T ′)
; (consistency), and

• for each T ≤ S and for each λ > 0, we have

μλ·T (λ · S) = μT (S) (universality).

Proposition 1 Every family of membership functions corresponding to > has the

form μT (S) =
(

T

S

)α

for some α > 0.

Proof For T = 1 and λ ≥ 1, universality implies that

μλ(λ · S) = μ1(S).

On the other hand, due to consistency, with T = 1 < T ′ = λ, we have

μλ(λ · S) = μ1(λ · S)

μ1(λ)
.

Equating the resulting two expressions for the same value μλ(λ · S), we conclude
that

μ1(S) = μ1(λ · S)

μ1(λ)
,

i.e., equivalently,
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μ1(λ · S) = μ1(λ) · μ1(S) (1)

In particular, for S = λ−1, we get

1 = μ1(1) = μ1(λ) · μ1(λ
−1),

hence

μ1(λ
−1) = 1

μ1(λ)
. (2)

For each λ < 1 and S, and for S′ = λ · S and λ′ = 1/λ > 1, the formula (1) leads
to μ1(λ

′ · S′) = μ1(λ
′) · μ1(S′), i.e., μ1(S) = μ1(1/λ) · μ1(λ · S), and thus, due to

(2), to the formula (1).
For λ = 1, the property (1) is trivially true. Thus, the property (1) is satisfied for

all λ > 0 and for all S.
Functions that satisfy this property are known as multiplicative, and it is known

that every monotonic multiplicative function has the form μ1(x) = x−α for some
real value α; see, e.g., [1]. Since all membership functions μT (S) are decreasing, we
must have α > 0.

For each T ≤ S, we can then use the universality property with λ = T −1 and get
μT (S) = μ1(S/T ), thus μT (S) = (S/T )−α. The proposition is proven.

This explains (weak) Lindy Effect. To make sure that for the membership func-

tion μT (S) =
(

T

S

)α

, both numerator and denominator integrals in the formula for

centroid defuzzification are finite, we must have α > 2. In this case,

∞∫

T

S ·
(

T

S

)α

d S = T α · 1

α − 2
· T 2−α = 1

α − 2
· T 2

and ∞∫

T

(
T

S

)α

d S = T α · 1

α − 1
· T 1−α = 1

α − 1
· T,

thus

S =
∫

S · μT (S) d S
∫ ∫

μT (S) d S
= α − 1

α − 2
· T .

Thus, the remaining time t = S − T is indeed proportional to T , which is exactly
what we called weak Lindy Effect.
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4 What About Probabilistic Case

Probabilistic case: (almost) the same result. In the previous section, we considered
the case when we use fuzzy logic to describe the corresponding uncertainty. What if
instead we use probabilities?

In this case, for each T , we have the probability pT (S) that the systemwill survive
for time S once it has survived for time T . The same arguments as in the fuzzy case
show that this function:

• should also satisfy the condition pT (T ) = 1,
• should also be decreasing as S increases, and
• should also not depend on the choice of the measuring unit, i.e., we should have

pλ·T (λ · S) = pT (S) for all T ≤ S and λ > 0.

And if we have already observed the system for time T ′ > T and the system survived
during this time, then the new probabilities pT ′(S) should be computed by using the

formulas for conditional probability: pT ′(S) = pT (S)

pT (T ′)
.

Thus, the new functions should satisfy the same conditions as described in Defi-

nition 1, and thus, by Proposition 1. it should have the same form pT (S) =
(

T

S

)α

for some α > 0.
In the probabilistic case, a natural numerical estimate is the mean value S =∫

S · ρT (S) d S, where the probability density function ρT (S) can be obtained by dif-
ferentiating the function pT (S)—which is, in effect, equal to 1 minus the cumulative

distribution function; see, e.g., [13]. In this case, we get S = α − 1

α
. So, in this case,

we also get the weak Lindy Effect.

Why do fuzzy and probabilistic approaches lead, in effect, to the same formula?
The fact that by using such different techniques as fuzzy and probabilistic, we get the
exact same result—that the expected remaining survival time t is proportional to the
survival-so-far time T—is a good indication that there is an even more fundamental
reason behind this dependence, reason not depending on which technique we use to
describe uncertainty.

And indeed, such a reason is easy to describe: the reason is what we called
universality, that the result should not depend on the choice of the measuring unit.
Our original problem was to find the estimate t = f (T ). In terms of the estimating
function f (x), universality means that if we have t = f (T ) in the original units, then
the same relation t ′ = f (T ′) should hold if we describe the times in the new units,
i.e., if we take t ′ = λ · t and T ′ = λ · T .

Formulating the problem in precise terms. Let us describe this requirement in
precise terms.
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Definition 2 We say that the function t = f (T ) is universal if for all t , T , andλ > 0,
the equality t = f (T ) implies that t ′ = f (T ′), where t ′ = λ · t and T ′ = λ · T .

Proposition 2 Every universal function has the form f (T ) = c · T for some con-
stant c.

Proof Let us denote f (1) by c, so that c = f (1). Then, for each T , if we take
λ = T , then universality enables us to imply that T · c = f (T · 1), i.e., that indeed
f (T ) = c · T . The proposition is proven.

Discussion. So, indeed, universality implies the weak Lindy Effect.

5 Why Strong Lindy Effect

Reminder. In the above text, we explained the weak Lindy Effect, according to
which the remaining survival time t is related to the survival-so-far time T by the
formula t = c · T , for some constant t . However, as we have mentioned, there is
strong evidence that this constant c is equal to 1, i.e., that we have what we called
the strong Lindy Effect t = T .

How can we explain this?

A simplified (somewhat naive) explanation. A simplified explanation comes from
Laplace Indeterminacy Principle (see, e.g., [5]), according to which if we have no
reason to believe that two quantities are different, it makes sense to assume that they
are equal.

From this viewpoint, since we do not have any reason to believe that the remaining
survival time t is smaller or larger than the survival-so-far time T , so it makes sense
to take t = T .

A better explanation: fuzzy case. In our problem, we know the value T , and know
that T < S. In this case, as we have mentioned earlier, the straightforward fuzzy
approach does not lead to any meaningful estimate for S.

But what if we reverse the problem: what is we assume that S is known, and the
only information that we have about T is that 0 ≤ T ≤ S. In this case, the corre-
sponding (crisp) knowledge leads to the following membership function:μS(T ) = 1
when 0 ≤ T ≤ S and μS(T ) = 0 otherwise. For this membership function, centroid
defuzzification leads to T = S/2.

So, if we know S, then we should take T = S/2. It is therefore natural to conclude
that if we know T , then we should take S for which T = S/2. For this S, we have
S = 2T , so the remaining survival time is t = S − T = T , which is exactly the
strong Lindy Effect.

Probabilistic case. We can apply the same reversal idea to the case of probabilistic
uncertainty.
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Suppose that we know the value S, and the only information that we have about
T is that T is between 0 and S. In this case, the maximum likelihood approach—
a natural formalization of the Laplace Indeterminacy Principle—implies that the
corresponding probability distribution on the interval [0, S] is uniform [5]. For this
uniform distribution, the mean value is T = S/2, which also prompts us to use the
estimate S = 2T and thus, t = T .

Comment. In [4, 8], a similar idea was used to explain why in engineering, after we
get an estimate of uncertainty based on known factors, practitioners usually double
this estimate to take into account possible unknown factors as well.

This leads, e.g., to doubling the safetymargins computed based only on the known
factors.

6 Application to Physics: How to Avoid Physically
Meaningless Infinite Values

Problem: reminder. It is known that in physics, some computations lead to mean-
ingless infinite values. The simplest example of such a phenomenon is computing
the overall energy of an electron’s electric field; see, e.g., [3, 15] for detail.

An electron is an elementary particle, which means that it has no independent
parts. According to special relativity, all velocities are bounded by the speed of light.
Thus, if the electron was not point-wise, if it had at least two spatially separated
points, then it would take some time for these points to influence each other—and
therefore, during this time, these two points would act independently. So, an electron
has to be a point-wise particle.

For a point-wise particle, the value of its electric fieldE at anypoint x is determined
by the Coulomb Law, as proportional to the r−2, where r is the distance between this
point and the location of the electron.

It is known that the energy density ρ(x) is proportional to the square of the electric
field, i.e., to r−4. The overall energy E can be computed by integrating this density
over the whole 3-D space: E = ∫

ρ(x) dx . The problem is the resulting integral is
infinite:

E =
∫

r−4 dx =
∞∫

0

r−4 · 4π · r2 dr = 4π ·
∞∫

0

r−1 dr = 4π · r−1|0∞ = ∞.

So, we get a physically meaningless value for a physically meaningful quantity—the
overall energy of the electron’s electric field.

How canwemake the corresponding estimate physicallymeaningful—i.e., finite?
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Comment. There are many such infinities in classical physics—the existence of such
infinities was one of the main reasons why quantum physics was discovered in the
first place. However, in contrast to many other cases when the answer become finite
in the quantum case, for the overall energy of the electron’s electric field remains
infinite in the quantum cases as well.

Known idea. A previously proposed possible way to solve this problem is to take
into account that measurements are always imprecise, that at any given moment of
time, there is a limit on how accurately we can measure, e.g., the distance—and
probably there is a fundamental limit; see, e.g., [7].

So, instead of the actual distance r , we can only conclude that the actual distance
is between r − ε (to be more precise, max(0, r − ε), since the distance cannot be
negative) and r + ε for some ε. Thus, the value of the electric field at any point x
is somewhere between (r + ε)−2 and (max(0, r − ε))−2, and, correspondingly, the
overall energy is between

E =
∫

(r + ε)−4 dx and E =
∫

(max(0, r − ε))−4 dx .

One can check that the first integral E is finite—for small r , the integrated function
(r + ε)−4 is bounded from above by the value ε−4. However, the second integral is
clearly infinite—since for r ≤ ε, we have max(0, r − ε) = 0 and thus,

(max(0, r − ε))−4 = ∞.

So, instead of the infinite value for the total energy E of the electron’s electric
field, we have a semi-infinite interval of possible values [E,∞). In other words, the
only information that we have about the overall energy is that it is larger than or
equal to E .

Lindy Effect helps. The situation when the only information that have about an
unknown quantity S is that it is larger than or equal to some known quantity T is
exactly the situation described by the Lindy Effect.

According to the Lindy Effect—which we explained in this paper—in such a
situation, the appropriate estimate for the unknown value E is a finite estimate E =
c · E (where it is highly probable that c = 1).

So,we have afinite estimate for the overall energy—thus avoiding themeaningless
infinity.
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Dimension Compactification Naturally
Follows from First Principles

Julio C. Urenda, Olga Kosheleva, and Vladik Kreinovich

Abstract According to modern physics, space-time originally was of dimension 11
or higher, but then additional dimensions became compactified, i.e., size in these
directions remains small and thus, not observable. As a result, at present, we only
observed 4 dimensions of space-time. There are mechanisms that explain how com-
pactification may have occurred, but the remaining question is why it occurred. In
this paper, we provide two first-principles-based explanations for space-time com-
pactification: based on Second Law of Thermodynamics and based on geometry and
symmetries.

1 Formulation of the Problem

What is dimension compactification. According to modern physics (see, e.g., [5,
9, 11]), the requirement that the quantum field theory be consistent implies that the
dimension of space-time should be at least 11. How can we combine this conclusion
with the fact that the observed space-time is only 4-dimensional?

A usual explanation is that while in the beginning, space-time may have had 11 or
more equally prominent dimensions, with time, most of these dimensions has been
compactified: i.e., the size in the direction of these additional dimension remains as
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small as the Universe was in its first moments, while other dimensions expanded to
the current astronomical sizes.

Compactification: how and why. There are several mechanisms that explain how
compactification could have happened. However, these mechanisms do not explain
why it happened.

In this paper, we provide arguments that compactification naturally follows from
first principle. We actually provide two first-principles explanations for space-time
compactification:

• an explanation based on the Second Law of Thermodynamics and
• an explanation based on geometry and symmetries.

2 Explanation Based on the Second Law
of Thermodynamics

Second Law of Thermodynamics: a brief reminder. According to the Second
Law of Thermodynamics (see, e.g., [2, 11]), the entropy of the Universe (and of any
closed system) increases with time (or, in some cases, stays the same)—and there
is no limit to such increase, eventually we get closer and closer to the state with the
largest possible entropy.

What is entropy: a brief reminder. In general, the entropy is defined as [6, 10]:

S = −
∫

ρ(x) · ln(ρ(x)) dx,

where ρ(x) is the probability distribution of the set of all possible micro-states.

How is entropy depending on dimension. In general:

• close points or close particles are strongly correlated, while
• distant particles are independent.

A simplified description of this phenomenon can be obtained if we assume that all
the points are divided into groups of nearby ones, so that:

• within each group there is a correlation, but
• between the groups there is no correlation.

It is known (see, e.g., [6]) that if we have several independent random processes,
then the overall entropy is equal to the sum of the entropies of these processes. Thus,
to find the overall entropy of the Universe in this approximation, it is sufficient to
compute the entropy corresponding to each group, and then add up the resulting
entropies.
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How many points n are in each such group? Let us consider first the case when
we only consider immediate neighbors—i.e., points whose all coordinates different
from this one by no more then 1 appropriate unit of distance. In a coordinate system
in which a central particle is at the point (0, . . . , 0), each of d coordinates of an
immediate neighbor is equal to −1, 0, or 1—three options. So overall, we have
n = 3d points. If we consider neighbors of neighbors, we can have 5d points—and,
in general, n = ad for some a > 1.

This number clearly grows with the dimension d. So, when we go from a higher
dimension d to a lower dimension d ′ < d, the number of neighbors decreases. This
means that:

• instead of the original group of size n in which all particles were correlated,
• we have several subgroups of smaller size, and there is no longer correlation
between different subgroups.

It is known—see, e.g., [6]—that if we know distributions corresponding to all the
subgroups, then the entropy of the overall distribution for the whole group is the
largest if and only if these subgroups are independent. Thus, when we divide a
group in which all elements were correlated into smaller independent subgroups, we
increase entropy.

Since, according to the usual interpretation of the Second Law of Thermodynam-
ics, there are no limitations to the increase in entropy, eventually, we should also
encounter a decrease in spatial dimension as a way to increase entropy—and this is
exactly what compactification is about.

Comment. The above argument does not imply that compactification will stop at our
3 dimensions: it can go further, to having a 2- and even 1-dimensional space. Maybe
this is what is already happening in the Universe, with 1D superclusters of Galaxies;
see, e.g., [1, 7].

3 Explanation Based on Geometry and Symmetries

Our second explanation is based on a natural physical process. The original
distribution of matter was uniform. However, the uniform distribution is not stable:

• if at some point, due to fluctuations, the density becomes larger than at the neigh-
boring points,

• then this point start attracting matter from its neighbors—thus further increasing
its density.

As a result, you get a large disturbance.

Symmetries and statistical physics: general idea. The original distribution in a
d-dimensional space was invariant under shifts, rotations, and scaling (i.e., transfor-
mation xi → λ · xi ).



156 J. C. Urenda et al.

According to statistical physics (see, e.g., [2, 11]):

• It is not very probably that from a highly symmetric state, we go straight into a
completely asymmetric one.

• Usually, themost probably transition is to a state that preserves asmany symmetries
as possible.

So, we expect the shapes of the disturbances to have some symmetries.

Analysis of the problem. What is the shape that has the largest number of
symmetries—i.e., for which the dimension of the corresponding symmetry group
is the largest?

If the shape is invariant with respect to all rotations in the d-dimensional space,
then it must consist of spheres, and a sphere has only rotations—so the dimension

of the corresponding symmetry group is
d · (d − 1)

2
. Indeed, infinitesimal rotations

are described by asymmetric matrices which have exactly as many parameters. So,
in this case, the dimension of the symmetry group is

d2 − d

2
.

If the shape includes a (d − 1)-dimensional space, then we have d − 1 indepen-

dent shifts,
(d − 1) · (d − 2)

2
independent rotations, and 1 scaling, to the total of

d − 1 + (d − 1) · (d − 2)

2
+ 1 = d2 − d + 2

2
,

which is larger than for the sphere.
If we have all (d − 1)-dimensional rotations but not all shifts or scaling, then we

have fewer symmetries.
What if we only have rotations in a (d − 2)-dimensional space, to the total of

(d − 2) · (d − 3)

2
?We cannot have d − 1 shifts, because thiswould lead to a (d − 1)-

dimensional space. Thus, we can have no more than d − 2 independent shifts. Even
if we have d − 2 shifts and rotations, we will have

d − 2 + (d − 2) · (d − 3)

2
+ 1 < d − 1 + (d − 1) · (d − 2)

2
+ 1

independent symmetries.

Conclusion. The most probable result of a natural spontaneous symmetry violation
of a d-dimensional space is a (d − 1)-dimensional space. Since fluctuations continue,
we will then get space of dimension d − 2, etc.

This provides another explanation of why the original space has lost many of its
dimensions.
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Comments.

• We have two explanations of the same phenomenon, but these explanations are
not contradicting each other—both are based on statistical physics, we just took
into account different aspects of it.

• The above idea of shapes motivated by symmetries has been used in physics—e.g.,
it explains the existing shapes of celestial bodies; see, e.g., [3, 4, 8].
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Is Our World Becoming Less Quantum?

Lidice Castro and Vladik Kreinovich

Abstract According to the general idea of quantization, all physical dependencies
are only approximately deterministic, and all physical “constants” are actually vary-
ing. A natural conclusion—that some physicists made—is that Planck’s constant
(that determines the magnitude of quantum effects) can also vary. In this paper, we
use another general physics idea—the second law of thermodynamics—to conclude
that with time, this constant can only decrease. Thus, with time (we are talking
cosmological scales, of course), our world is becoming less quantum.

1 Formulation of the Problem

Our world is a quantum world. According to modern physics, our world is a
quantum world, a world described by quantum physics.

In order to formulate the problem that we will be solving in this paper, let us recall
the main physical idea behind quantization. To convincingly describe this idea, let
us briefly recall how physics came up with the quantum ideas in the first place; see,
e.g., [1, 8].

Classical mechanics. Before quantum physics appeared, physics was described by
deterministic equations, namely, by Newton’s equations. According to Newton’s
equations

m · ẍi = Fi , (1)

the trajectory xi (t) of a particle with massm is uniquely determined by this particle’s
original location xi (t0), original velocity ẋi (t0), and the forces Fi (x j , t).
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The forces acting on a particle are, in their turn, uniquely determined by the
locations and velocities of other particles. For example, the gravitational force F (a)

i (t)
acting on the particle a of mass m(a) located at the point x (a)

i is equal to

F (a)
i (t) = G ·

∑

b

m(a) · m(b) · (x (b)
i − x (a)

i )

‖x (b) − x (a)‖3 , (2)

where the sum is taken over all other bodies b, and ‖x‖ def=
√
x21 + x22 + x23 .

Usually, the forces are described in terms of the corresponding field—which is,
in turn, uniquely determined by the locations and velocities of all the particles.

Need to go beyond classical mechanics. In the traditional (non-quantum) mechan-
ics, all the processes are deterministic.

It turns out that many processes in the world—radioactivity was probably the
first example—are probabilistic. We cannot predict when an atom will experience a
radioactive decay—we can only predict the probability of this happening.

Original (first) quantization. The need to take into account that many processes
in the real world are probabilistic led to the development of the original quantum
mechanics. In this formalism, the particle’s trajectory is not determined uniquely by
its original state and all the forces. When we know the original location and velocity
of a particle, and we know the fields (hence the forces), we can only predict the
probability distribution on the set of all possible trajectories—or, to be more precise,
the probabilities of different possible results of measuring coordinates and velocities.

To what extent predictions are probabilistic is determined by a constant � intro-
duced by Max Planck, one of the founders of quantum physics. The smaller the
Planck’s constant, the closer all the trajectories to the Newton’s ones.

How this probabilistic idea is related to a more traditional understanding of
quantization. Planck did not start with the probabilistic nature of physics.

His original idea was different—that while in Newtonian physics, the values of
all physical quantities change continuously, in reality, some quantities can only take
values from some discrete set. In this case, transitions have to be abrupt. So, whether
the object will change to a new state cannot be determined only by the state itself:
for some time, the object stays in the same state, and then jumps to another state.
This cannot be deterministic—thus we need a probabilistic description.

Towards second quantization. The original quantum mechanics worked very
well—until it turned out that its predictions are not always in full accordance with the
experiment. The solution—known as second quantization—came from the observa-
tion that while in the original quantum mechanics, the dependence of the trajectory
on the fields is probabilistic, this theory still assumed that the fields themselves are
uniquely determined by the positions and velocities of all the particles.

A natural idea was therefore to take into account that the fields are also not
uniquely determined by the positions and velocities of all the particles, that all this
information about the particles only enables us to predict the probabilistic distribution
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on the set of all possible fields. This idea enabled researchers to match the theory
with experimental data. The resulting quantum field theories are, at present, the main
way how the world’s processes are described in modern physics.

Beyond second quantization. In the first quantization, the probability distribution
of the set of all the trajectories is uniquely determined by the particle’s initial loca-
tions and velocities. The dependence of this probability distribution on the particle’s
locations and velocities is determined by the corresponding fields which are, in turn,
uniquely determined by the particles’ locations and velocities.

In the second quantization, the dependence of the field on the particles’ initial
locations and velocities also becomes probabilistic. Thus, the probability distribution
on the set of all trajectories is no longer uniquely determined by the particle’s initial
locations and velocities.

A natural next idea is to assume that the probability distribution on the set of
all possible fields is also not uniquely determine by the particles’ initial locations
and velocities, that all we can predict is the probability distribution on the set of
all probability distributions, etc. The effect of this “third” quantization is too small
to be noticeable at present, but this led many physicists—most famous of them
John Wheeler—to formulate the general idea of quantization as saying that every
dependence is probabilistic, and to analyze interesting consequences of this idea
with respect to space-time; see, e.g., [5].

Mathematical interruption: but is not probability distribution of the set of prob-
ability distributions the same as just a probability distribution? Not really. Sup-
pose that we have a probability 0.5 that a coin falls head. This means that for each
coin out of the large set of minted coins, if we flip this coin many times, in half of
the cases this coin will fall head, and in half of the cases, it will fall tail.

Suppose now that instead of the fixed probability p = 0.5, we have a probability
distribution on the set of all possible values p. This would means that for some coin,
if we flip it many times, we will consistently get head 0.6 of the time, while for some
other coin, we may consistently get head 0.4 of the time. Yes, if we combine all the
experiment results together, we still get 0.5, but overall, the experiment results are
different from what we would have observed if we had probability p = 0.5.

Back to physics: according to the general quantization idea, Planck’s constant
is no longer a constant. The same general logic leads to a conclusion that the local
value of any physical constant is no longer a constant, that it can fluctuate from one
moment to another, from one spatial location to another. For the speed of light—
the parameter that, according to relativity theory, describing the space-time—these
variations are well known: this is exactly what General Relativity teaches, that the
space-time differs from one point to another.

But an interesting—and not as well accepted—conclusion is that the Planck’s
constant—that determines howdeterministic is the dependence—is also not constant,
it fluctuates from one point of space-time to another. Theories in which Planck’s
constant is actually a new physical field have indeed been proposed.

Now, we can formulate the problem that we analyze in this paper.
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Whatare thepossible consequences of taking intoaccount thatPlanck’s constant
is not a constant? This is the question that we study in this paper.

2 Analysis of the Problem and the Resulting Conclusion

Idea. In our analysis, we cannot rely on specific equations—since the whole idea is
that all equations are approximate. Instead, we have to rely on general principles.

One of these principles is the second law of thermodynamics—that the entropy S
of any closed system, including the world as a whole, can only increase.

What is entropy? For a probabilistic distribution, entropy is the average number of
“yes”-“no” questions that one needs to ask to uniquely determine the state; see, e.g.,
[4, 7].

If we have N original states, then we can divide these states into two equal parts
and by a single question determine whether the current state belongs to the first half
or to the second half. So, each question divides the number of states by 2. Thus,
k questions divide the number of possible states by 2k , to N/2k . Hence, to be left
with a single possible state, the needed number of questions k is determined by the
condition that N/2k = 1, i.e., that 2k = N and k = log2(N ).

Weneed to takeuncertaintyprinciple into account.Theworld consists of particles.
At each moment of time, the state of each particle is characterized by its location and
it velocity—or, what is equivalent, its momentum. In quantum physics, we cannot
determine both coordinate xi and the corresponding momentum pi exactly: there
is the Uncertainty Principle, according to which the accuracies Δxi and Δpi with
which we can determine these two quantities satisfy the inequalityΔxi · Δpi ≥ �. In
other words, the state of each particle is characterized not by a single point (x, p) =
(x1, x2, x3, p1, p2, p3) in the 6-D space (known as phase space), but by an area of
6-D volume �

3.
Thus, the number N of distinguishable states can be obtained if we divide the 6-D

volume V of the set of all possible points (x, p) by �
3: N = V/�

3.

Conclusion: our world is becoming less quantum. The entropy k = log2(N ) can
only increase, thus the number of states N can also only increase. For a fixed V ,
the only way for the number of states N to increase is when the Planck’s constant �

decreases.
Thus, once we accept the general conclusion that Planck’s constant can change,

the only direction is which it can globally change is by decreasing. Since the value of
this constant determines the intensity of quantum effects, this means that our world
is becoming less and less quantum.

Not to worry. Of course, we are talking changes in cosmological time: so far, no
macro-time experiments have found any change in the Planck’s constant.

How this affects our ability to compute—and thus, to predict.On the one hand, if
the world is becoming more deterministic, it will become easier to predict its future
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state: all we need to do is predict one state, not the whole probability distribution on
the set of all possible states.

On the other hand, our general ability to compute will decrease—since it will no
longer be possible to use quantum computing, which is known to drastically decrease
the computation time of many important computations; see, e.g., [2, 3, 6].
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As Complexity Rises, Meaningful
Statements Lose Precision—But Why?

Miroslav Svítek, Olga Kosheleva, and Vladik Kreinovich

Abstract One of the motivations for Zadeh’s development of fuzzy logic—and one
of the explanations for the success of fuzzy techniques—is the empirical observation
that as complexity rises, meaningful statements lose precision. In this paper, we
provide a possible explanation for this empirical phenomenon.

1 Formulation of the Problem

Empirical fact. Many researchers are familiar with Lotfi Zadeh’s observation that
“As complexity rises, precise statements lose meaning and meaningful statements
lose precision”; see, e.g., [3], p. 43. This is one of the most cited phrases by Zadeh.
This empirical fact served as one of the main motivations for developing fuzzy
techniques. This empirical fact also serves as a good explanation for why these
techniques have been successful in many applications; see, e.g., [1, 2, 4–7].

But why? But how can we explain this empirical fact? In this paper, we provide a
possible explanation.
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2 Analysis of the Problem

Towards reformulating the question in precise terms. In general, we can have both
precise and imprecise (“fuzzy”) statements about a system. The empirical fact—as
observed by Zadeh—is that:

• when a system is simple, this system is adequately described by precise statements,
while

• as the system becomes more complex, its adequate description requires more and
more fuzzy statements.

How can we explain this empirical fact?

Towards a corresponding model. Let us consider possible statements S1, . . . , Sn
that we can make about a system.

In general, for each system, for each statement Si , we can—following the general
fuzzymethodology—describe our degree of confidence in this statement by a number
xi from the interval [0, 1]. So, our description boils down to a tuple x = (x1, . . . , xn)
of numbers from the interval [0, 1]—i.e., to a point in an n-dimensional cube [0, 1]n .

What we want from a model. We want our model to be consistent with all the
different observation patterns characterising the system’s behavior. Let us denote the
number of such patterns by p, and let us denote the requirement that the tuple x is
consistent with the j th pattern by f j (x) = 0.

Among all the models that are consistent with all the patterns, we should select a
model which is the best: this could be the simplest to describe, the simplest to use,
the least deviating from the current model, etc. “The best” means that some objective
function a(x) take the largest possible value. We will call the value of this objective
function for a given model x the “degree of quality” of this model.

In this term, selecting, among all the descriptions for which f j (x) = 0 for all j ,
the description x which is the best, means selecting the description for which the
degree a(x) is the largest possible.

Our descriptions are not ideal. In general, every description is approximate. To get
an ideal “most adequate” description, we need to consider more than n statements.
In geometric terms, the ideal description is outside our n-dimensional cube [0, 1]n .

It is reasonable to assume that the closer we are to this ideal description, the
more adequate our model. At the point x that corresponds to the ideal model, the
objective function a(x) attains its largest possible value, i.e., its global maximum.
At every other point, if we get slightly closer to the ideal model, then the model
becomesmore adequate—i.e., the value of the corresponding objective function a(x)
increases. Thus, the objective function cannot have any local maxima—because in
the vicinity of a local maximum, the value of the function does not increase nomatter
in what direction we go. So, we expect the quality function a(x) to have no local
maxima—its only maximum is the global maximum.
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Using known facts from calculus. It is known that if a function has no local maxima
inside an area, then its maximum in this area is attained on the border of this area.

Let us start with the case when we have no observation patterns at all. Let us
first consider the trivial case when we have no observation patterns at all, i.e., in
mathematical terms, when we have no constraints. As we have argued, the global
maximum of this objective function is attained outside the cube, and there are no
local maxima inside the cube. Thus, in line with the above fact from calculus, in this
case, the desired maximum of the quality function a(x) is attained on the border of
the n-dimensional cube.

This border consists of faces, which are described by the equations xi = 0 or
xi = 1. On each of these faces, we also do not expect to have a local maximum, so
the optimal description should correspond to the border of each face, i.e., to the set
of all points where two of the values xi are equal to 0 or 1.

Following the same line of reasoning, we conclude that the maximum of the
objective function a(x) on the n-dimensional cube is attained at an extreme point of
the cube, i.e., at a point where each of the values xi is equal to 0 or to 1.

So, in the absence of any observation patterns, the best description is a crisp
description.

What if we take observation patterns into account. In general, the same argument
as in the previous subsection leads us to the conclusion that the maximum of the
quality function a(x) is attained at one of the extreme points of the corresponding
area.

If we take observation patterns into account, this means that the corresponding
area consists of all the tuples x for which f j (x) = 0 for all j from 1 to p, i.e., this
area is equal to the following set:

S
def= {x = (x1, . . . , xn) : 0 ≤ xi ≤ 1 for all i and f j (x) = 0 for all j}.

This set S is a particular case of a set defined by equalities f j (x) = 0 and inequalities
gk(x) ≥ 0. For our sets, the inequalities are:

• xi ≥ 0, i.e., gi (x) ≥ 0, where gi (x)
def= xi , and

• xi ≤ 1, i.e., gn+i (x) ≥ 0, where gn+i (x)
def= 1 − xi .

In general, for a set defined by equalities and inequalities, an extreme point is when as
many inequalities gk(x) ≥ 0 as possible become equalities, i.e., satisfy the condition
gk(x) = 0. In general:

• if the number of equations is smaller than the number of unknowns, then we have
many solutions;

• if the number of equations is equal to the number of unknowns, then we have a
unique (or at least locally unique) solution; and

• if the number of equations is larger than the number of unknowns, then the system,
in general, does not have a solution.
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Thus, for a tuple x consisting of n real values, the largest number of equalities that
this tuple can satisfy is n. So, extreme points correspond to the case when n equalities
are satisfied.

We already have p equalities f j (x) = 0 that are satisfied. Thus, for an extreme
point forwhich n equalities are satisfied, n − p remaining inequalities become equal-
ities. These remaining inequalities have the form 0 ≤ xi ≤ 1, i.e., the form xi ≥ 0
and 1 − xi ≥ 0. Thus, the fact that these inequalities become equalities means that
for the corresponding values i , we have:

• either xi = 0
• or 1 − xi = 0, i.e., xi = 1.

The fact that xi = 0 or xi = 1 means that in this description, the i th statement is
crisp. We therefore conclude that in the best model, out of n statements Si , n − p of
them are crisp.

The remaining truth values are determined by p equations f j (x) = 0. In the
general case, all components of a solution of a systemof p equationswith p unknowns
are different from 0 and 1. Thus, in the general case, for the remaining p statements
k, we have 0 < xk < 1—i.e., these statements are, in general, not crisp.

Mathematical conclusion. So, in the general case, if we have p observation patterns,
then in the best description, we have:

• p fuzzy statements, and
• n − p crisp statements.

How this is related to system complexity. The more complex a system, the more
different behavioral patterns it exhibits. This is, in a nutshell, is what we mean by a
complex system. For example:

• a pendulum shows the same behavior all the time; in this sense, it is a simple
system;

• on the other hand, a human being has many different patterns of behavior and is,
thus, a complex system.

In the previous subsection of this section,we presented the conclusion of our analysis:
that the more different patterns of behavior a system exhibits, the larger the number
of fuzzy statements in this system’s best description. So, indeed, as complexity rises,
more meaningful statements become fuzzy—i.e., lose precision.

This is exactly Zadeh’s observation. Thus, our analysis indeed explains this obser-
vation.
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Why People Overestimate Small
Probabilities?

David Amparan and Vladik Kreinovich

Abstract It is a known empirical fact that people overestimate small probabilities.
This fact seems to be inconsistent with the fact that we humans are the product
of billions years of improving evolution—and that we therefore perceive the world
as accurately as possible. In this paper, we provide a possible explanation for this
seeming contradiction.

1 Formulation of the Problem

People overestimate small probabilities. It is known that people routinely overesti-
mate small probabilities when making decisions. They overestimate the probability
of rare side effects—and thus, refuse to take important vaccinations.

Experiments performed by the Nobelist Daniel Kahneman and his team show that
indeed, most people overestimate small probabilities; see, e,g., [1] (see also [2, 3]).

But why? This is a fact, but how can we explain this fact from the biological view-
point?

At first glance, themore adequatelyweunderstand the situation, themore adequate
decision we can make. So why did evolution preserve this clearly biased perception
of small probabilities?

What we do in this paper. In this paper, we provide a possible answer to this
“why”-question.
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2 How Do We Know Probabilities?

To provide an explanation, let us recall how we learn the probabilities.
Probabilities are estimates based on our experience. If we saw some event n times

out of N , then we estimate the probability as the ratio n/N .
Of course, this is only an approximate estimate. If we flip a perfectly symmetric

coin 10 times, we may get n = 5 heads, but we may also get 6 or 4 or 7.

3 Which Outcomes Are Possible?

If an event has probability p, how may times out of N can it occur? If the actual
probability is p, then out of N tries:

• the event happens on average in μ
def= p · N times, and

• the variance of number of events is equal to σ 2 = N · p · (1 − p).

For small p, we have 1 − p ≈ 1, so σ 2 ≈ μ and thus, μ ≈ σ 2.
Usually:

• if we have a distribution with a known mean and standard deviation,
• we conclude—with high confidence—that the actual value is somewhere between

μ − k · σ and μ + k · σ ; see, e.g., [4].

Here, k = 2, 3, 6, . . . depending on the desired level of confidence.

4 So What Can We Conclude About the Probability?

Suppose that some event occurred n time out of N . So, the only information that we
can conclude about its probability p is that μ − k · σ ≤ n ≤ μ + k · σ .

Since μ = σ 2, equivalently,

σ 2 − k · σ ≤ n ≤ σ 2 + k · σ, (1)

where p = σ 2/N .

• The first of the two inequalities (1) is the inequality σ 2 − k · σ ≤ n, i.e., equiv-
alently, σ 2 − k · σ − n ≤ 0. Due to the known properties of quadratic functions,
this inequality means that the non-negative value σ is between the roots of the
corresponding quadratic equation σ 2 − k · σ − n = 0, i.e., that

k − √
k2 + 4n

2
≤ σ ≤ k + √

k2 + 4n

2
.
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The left-hand side expression is always non-positive, so the left inequality is always
satisfied. Thus, to satisfy the first of the two inequalities (1), it is sufficient to have

σ ≤ k + √
k2 + 4n

2
. (2)

• The second of the two inequalities (1) is the inequality n ≤ σ 2 + k · σ , i.e., equiva-
lently,σ 2 + k · σ − n ≥ 0.Due to the knownproperties of quadratic functions, this
inequality means that the non-negative value σ is either smaller than the smaller
root of the corresponding quadratic equation σ 2 + k · σ − n = 0 or larger than the
larger of the roots, i.e., that

σ ≤ −k − √
k2 + 4n

2
or

−k + √
k2 + 4n

2
≤ σ.

The expression
−k − √

k2 + 4n

2
is always non-positive, so the first inequality is

never satisfied. Thus, to satisfy the second of the two inequalities (1), it is sufficient
to have

−k + √
k2 + 4n

2
≤ σ. (3)

By combining the inequalities (2) and (3), we conclude that

√
k2 + 4n − k

2
≤ σ ≤

√
k2 + 4n + k

2
, so

p
def= 2n + k2 − k · √

k2 + 4n

2N
≤ p ≤ p

def= 2n + k2 + k · √
k2 + 4n

2N
.

5 Which Probability Value Should We Select?

We know that

p
def= 2n + k2 − k · √

k2 + 4n

2N
≤ p ≤ p

def= 2n + k2 + k · √
k2 + 4n

2N
.

We have no reason to consider one of the values from the interval [p, p] as more
probable. So, it makes sense to consider all these values equally possible.

In this case, a natural idea is to select the average of these values, i.e., the midpoint

p + p

2
= n

N
+ k2

2N
.
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This value is always larger than the frequency n/N—which is the usual (and unbi-
ased) estimate of the actual probability.

This provides a possible explanation of why we, in general, overestimate the
values of small probabilities.
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Why Ovals in Eliciting Intervals?

Joshua Zamora and Vladik Kreinovich

Abstract To elicit people’s opinions, we usually ask them to mark their degree of
satisfaction on a scale—e.g., from 0 to 5 or from 0 to 10. Often, people are unsure
about the exact degree: 7 or 8? To cover such situations, it is desirable to elicit not a
single value but an interval of possible values. However, it turns out that most people
are not comfortable with marking an interval. Empirically, it turned out that the best
way to elicit an interval is to ask them to draw an oval whose intersection with the 0-
to-10 line is the desired interval. Surprisingly, this seemingly more complex 2-D task
is easier for most people that a seemingly simpler 1-D task of drawing an interval.
In this paper, we provide a possible explanation of why eliciting an interval-related
oval is more efficient than eliciting the interval itself.

1 Need to Elicit Intervals

People’s opinion is usually elicited by asking people to mark a point on a scale. This
us how, e.g., students evaluate their instructors.

• In some cases, people are absolutely certain about their marks.
• However, in many other cases, they are not so sure. For example, a person may
hesitate where to mark a good but not excellent service by 7 or 8 on a 0 to 10 scale.

Since the usual scale only allows one mark, the person will put either 7 or 8.

�� �� �� �� �� �� �� �� �� �� ��
0 1 2 3 4 5 6 7 8 9 10

?
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�� �� �� �� �� �� �� �� �� �� ��
0 1 2 3 4 5 6 7 8 9 10

?

We could get a more adequate understanding of the people’s opinions if we allow
the user, in such situations, to explicitly explain that both 7 and 8—and thus, all the
values in between—could be this person’s marks.

In other words, we would get a more adequate description of people’s opinions if
we allow them to describe their opinion by intervals, and not just by the numerical
values.

�� �� �� �� �� �� �� �� �� �� ��
0 1 2 3 4 5 6 7 8 9 10

2 Eliciting Intervals Is not Easy

Eliciting intervals would be beneficial for processing people’s opinions. However,
people are not accustomed to marking intervals. Therefore, they are reluctant to do it.

To make this task easier for users, researchers tried different approaches. Inter-
estingly, a successful approach came when researchers decided to elicit a 2-D figure.

Namely, they elicit an oval whose intersection with the straight line provides the
desired interval; see [1].

�� �� �� �� �� �� �� �� �� �� ��
0 1 2 3 4 5 6 7 8 9 10��

��

3 Why: The Question and Our Explanation

Why? A 2-D oval contains more information that the resulting interval. So why is it
easier for the users to provide ovals than to directly provide intervals?

Our explanation. Psychologists have found that the perceived complexity of a curve
increases with the number of vertices; see, e.g., [2].

• Smooth curves like ovals are the simplest.
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��

��

• On the other hand, an interval—with 2 vertices—is much more complex.

�� ��

This explains why it is easier for people to draw an oval than to directly draw an
interval.
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Why Moments (and Generalized
Moments) Are Used in Statistics andWhy
Expected Utility Is Used in Decision
Making: A Possible Explanation

R. Noah Padilla and Vladik Kreinovich

Abstract Among the most efficient characteristics of a probability distribution are
its moments and, more generally, generalized moments. One of the most adequate
numerical characteristics describing humanbehavior is expected utility. In both cases,
the corresponding characteristic is the sum of results of applying appropriate non-
linear functions applied to individual inputs. In this paper, we provide a possible
theoretical explanation of why such functions are efficient.

1 Formulation of the Problem

In this paper, we provide a new explanation of two seemingly unrelated phenomena:

• that moments (and, more generally, generalized moments) are effectively used in
statistics; see, e.g., [8], and

• that expected utility is effectively used in decision making; see, e.g., [1–7].

Before we provide the corresponding explanations, let us first briefly describe these
two phenomena.

Moments and generalized moments: a brief reminder. One of the most frequent
ways to characterize a random variable x is to use moments—i.e., expected values
E[xk] of some integer power of this variable—and, more generally, generalized
moments, i.e., expected values E[ f (x)] of some function of the random variable.

For each random quantity q, its expected value is equal to the limit of its average
observations q1, . . . , qn, . . .:
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E[q] = lim
n→∞

q1 + · · · + qn
n

.

By definition of the limit, this means that when n becomes larger and larger, the
average

q1 + · · · + qn
n

gets closer and closer to the expected value. Thus, a reasonable way to estimate the
mean based on the observations qi is to take the arithmetic average of all the observed
values:

E[q] ≈ q1 + · · · + qn
n

.

In particular, to estimate the value E[ f (x)] of the generalized moment (or, in par-
ticular, of a usual moment corresponding to f (x) = xk) based on the observations
x1, · · · , xn , it is reasonable to use the corresponding arithmetic average

E[ f (x)] ≈ f (x1) + · · · + f (xn)

n
. (1)

Alternative formulas for moments and generalized moments. In some cases, we
have limited number of values v1, · · · , vk (k � n) that the variables xi can take. In
this case, each term f (xi ) in the sum

s
def= f (x1) + · · · + f (xn) (2)

is equal to one of the k values f (v j ), 1 ≤ j ≤ k. In such cases, we can simplify the
formula (2) by grouping together terms equal to f (v1), terms equal to f (v2), etc.
Then, we get

s = f (v1) + · · · + f (v1) (n1 times) + · · · + f (vk) + · · · + f (vk) (nk times),

where n j denotes the number of terms f (xi ) which are equal to f (vk), or, equiva-
lently,

s = f (x1) + · · · + f (xn) = n1 · f (v1) + · · · + nk · f (vk).

Substituting this expression into the formula (1), we conclude that

E[ f (x)] ≈ n1
n

· f (v1) + · · · + nk
n

· f (vk). (3)

Here, the ratio
n j

n
is the frequencywithwhich the valuev j appears in the observations,

i.e., in effect, the probability p j of this value—to be more precise, the probability
is defined as the limit of such a frequency, but since we are considering large n,
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probability and frequency are approximately the same. Thus, the formula (3) takes
the form

E[ f (x)] ≈ p1 · f (v1) + · · · + pk · f (vk). (4)

Expected utility: a brief reminder. It is known—see above references—that a ratio-
nal person, when making a decision, should maximize the value of a special expres-
sion known as expected utility

u
def= p1 · u(v1) + · · · + pk · u(vk), (5)

where:

• v1, . . . , vk are possible consequences of the selected action,
• p j is the (subjective) probability of getting an alternative v j , and
• u(v j ) is a number—called utility—that characterize the value of the alternative v j

to the decision maker.

Comment. The main use of expected utility is to decide which alternative is better,
i.e., which decision we should make. From this viewpoint, what is important are
not the numerical values (5) themselves, but which values are larger and which are
smaller. From this viewpoint, instead of the values u, we could use the values g(u)
for any increasing function g(u)—since for an increasing function u < u′ if and only
if g(u) < g(u′).

Is there a common explanation for these two formulas? There exist explanations
for both formulas (4) and (5), explanations based on different ideas; see, e.g., the
above references. However, the fact that the expressions (4) and (5) are very similar—
in both cases, we have a linear combination of the values of some function ( f (v) in
the first case, u(v) in the second case) applied to different values v1, . . . , vk—made
us think that there also be a joint explanation for these two seemingly unrelated
formulas. In this paper, we provide a possible common explanation.

2 Main Ideas Behind Our Explanation

In many practical problem, computation time is a big issue. Nowadays, we get a
lot of data, and we have a lot of computational ability. However, still, computation
time remains a big issue. For example, with numerous weather sensors almost every-
where, we get a lot of data that enables us to predict tomorrow’s weather reasonably
well—but because of the huge amount of data and, as a result, a huge amount of
computations, the only way to predict weather is to use high-performance comput-
ers, where a large number of processors are working in parallel, and even on such
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computers, weather prediction takes hours (and became possible only after special
time-saving algorithms were implemented).

In many other problems we still cannot perform computations in desired time. For
example, in principle, it is possible to predict somewhat accurately inwhat direction a
potentially deadly tornadowill go in the next 15min—but the resulting computations
so far require much longer than 15min and are, therefore, practically useless. From
this viewpoint, it is desirable to come up with computations that can be performed
as fast as possible.

Which computations are the fastest? Of course, to make computations faster, we
need to parallelize computations as much as possible. On a parallel computer, first,
all the processors perform one computation step, then they all perform another step,
etc. To minimize the overall computation time:

• we need to minimize the number of steps, and
• we need to minimize the time needed for each step—i.e., in other words, perform,
at each step, computations which are as fast as possible.

Which computational steps are the fastest? When we process numbers, compu-
tation on a deterministic computer means, in effect, computing the value of some
function of an input. Overall, the function we compute is a composition of functions
computed on consequent steps.

Among different functions of several variables, linear functions, i.e., functions of
the type

f (x1, . . . , xn) = a0 + a1 · x1 + · · · + an · xn (6)

are the easiest (thus fastest) to compute.
However, if we only use linear computational steps, then, due to the fact that

a composition of linear functions is linear, we will only be able to compute linear
functions, while in real life, many processes are nonlinear. Thus, in addition to linear
computational steps, we also need some nonlinear ones.

In general, the more inputs a function has, the longer it takes to process all these
inputs and to compute the value of this function. From this viewpoint, among all
nonlinear functions, the fastest to compute are nonlinear functions of one variable y =
s(x). Thus, fastest computations should consist of two types of computational steps:

• linear steps, on which we compute a linear combination (6) of the inputs, and
• nonlinear steps, on which we compute the value of a function of one variable

y = s(x).

Tomake computations fast, consequent computational stepsmust be of different
types. Indeed, ifwehave a linear step followedby a linear step, then all these two steps
compute is a composition of two linear functions—which, as we have mentioned, is
also a linear function. Thus, instead of these two steps, we can have a single linear
step, in which we directly compute this composition.
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Similarly, if we have a nonlinear step y = s(x) followed by another nonlinear
step z = s ′(y), then all these two steps compute is a composition z = s ′(s(x)) of
these two functions—i.e., also a nonlinear function of one variable. Thus, instead of
these two steps, we can have a single nonlinear step, in which we directly compute
this composition.

So, in general, to make computations faster, we need to make sure that consequent
computational steps are of different types, i.e., that:

• a linear computational step is followed by a nonlinear one, and
• a nonlinear computational step is followed by a linear one.

What canwe computewith the smallest possible number of computational steps.
Now that we know which are the fastest computational steps, let us analyze which
functions can be computed by using the smallest possible number of computational
steps.

The smallest possible number of computational steps is 1. In one step, we can
compute either a linear function or a function of one variable. In both statistics and
decision making applications, we need to process several numbers:

• in the statistics cases, we need to take into account (and thus, to process) several
observations x1, . . . , xn , and

• in the decision making cases, we need to take into account (and thus, to process)
several different possible consequences v1, . . . , vk of the analyzed decision.

Thus, if we limit ourselves to a single computational step, we cannot use a function
of one variable. Therefore, we have to use a linear function. In case of the statistical
analysis, this corresponds to using the first moment

E[x] ≈ x1 + · · · + xn
n

= p1 · v1 + · · · + pk · vk,

for some values p j . In case of decision making, this corresponds to having utility
proportional to the numerical value v j of each alternative:

u = p1 · v1 + · · · + pk · vk .

In line with the general fact that some real-life dependencies are nonlinear, both in
statistical analysis and in decisionmaking, wemay need to use nonlinear functions to
get amore adequate description. In this case,weneed to use at least twocomputational
steps.

Two stages: possible options. Due to the above, these stage must be different. So,
we have two options:

• the first option is to have a linear stage followed by a nonlinear stage, and
• the second option is to have a nonlinear stage followed by a linear stage.
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Two stages: first option. If the first stage is linear and the following one nonlinear,
then, in general, we compute a function

f

⎛
⎝a0 +

k∑
j=1

a j · v j

⎞
⎠ .

Comparing such values is equivalent to comparing the corresponding linear combi-
nations a0 + ∑k

j=1 a j · v j , and we know that such a linearized approach does not
work for many real-life phenomena.

Two stages: second option. If the first stage is nonlinear and the second one linear,
then we compute expressions a0 + ∑k

j=1 a j · f j (v j ). This provides a more general
opportunities for comparison.

In particular, if a priori, we have no reason to prefer some j’s, then it makes sense
to use the same nonlinear function f j (v) = f (v) to process all the inputs. Thus, we
get the expression

a0 +
k∑
j=1

a j · f (x j ). (7)

This expression is exactly what we wanted to explain. The formula (7) is exactly
what is used when we use generalized moments or expected utility. Thus, we have
indeed explained the desired expressions.
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Decision Making Under Uncertainty:
Cases When We Only Know an Upper
Bound or a Lower Bound

Toshiki Kamio, Gavin Baechle, and Vladik Kreinovich

Abstract In situations when we have a perfect knowledge about the outcomes of
several situations, a natural idea is to select the best of these situations. For example,
among different investments, we should select the one with the largest gain. In prac-
tice, however, we rarely know the exact consequences of each action. In some cases,
we know the lower and upper bounds on the corresponding gain. It has been proven
that in such cases, an appropriate decision is to use Hurwicz optimism-pessimism
criterion. In this paper, we extend the corresponding results to the cases when we
only know an upper bound or a lower bound.

1 Formulation of the Problem

In investment, when a person knows the exact monetary consequence of each action,
he/she naturally selects an action with the largest possible gain.

In practice, we usually know the consequences only with some uncertainty. For
example, instead of the exact gain value, the whole set S of different possible gain
values are consistent with our knowledge. How should we then make a decision?
What is the equivalent price v(S) that we are willing to pay to participate in the
corresponding action?

For example, we may know the lower bound a and the upper bound on the gain.
In this case, the set S is the interval [a, b].
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Alternatively, we may know:

• only the lower bound, in which case S = [a,∞) or
• only the upper bound, in which case S = (−∞, b].

2 How This Problem Is Solved If We Know Both Bounds

Shift-invariance. Suppose that we are willing to pay v(S) for the set S. Then, for
the set S and a fixed amount c, we are willing to pay v(S) + c.

In this joint offer, the set of possible outcomes is

S + c
def= {s + c : s ∈ S}.

So, a reasonable price to pay for this joint offer is v(S + c).
These are two different descriptions of the same situation. The price that are

willing to pay to participate in this situation should not depend on how we describe
this situation. So, we should have v(S + c) = v(S) + c. This property is called shift-
invariance.

Scale-invariance. Another idea is that the transformation S �→ v(S) should not
depend on the choice of the monetary unit. For example, if we select pesos instead
of dollars, we should get the same equivalent value.

In precise terms, this means v(λ · S) = λ · v(S), where

λ · S def= {λ · s : s ∈ S}.

This property is known as scale-invariance.

Additivity. The third idea is that participation in two independence actions, with sets
S1 and S2, is equivalent to participation in a single action with the result

S1 + S2 = {s1 + s2 : s1 ∈ S1 & s2 ∈ S2}.

These are two ways of representing the same situation. So we should have

v(S1 + S2) = v(S1) + v(S2).

This property is known as additivity.

Known results (see, e.g., [2]). For interval uncertainty, additivity implies Hur-
wicz formula v([a, b]) = α · b + (1 − α) · a for some α ∈ [0, 1]. The same formula
emerges if we assume shift- and scale-invariance.
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3 What if We only Know the Lower Bound

Description of the case. Suppose that we only know the lower bound a. In this case,
the set of possible gains is the infinite interval [a,∞). What is the price

f (a)
def= v([a,∞))

that we should pay for this situation?

What if we assume additivity. For infinite intervals,

[a,∞) + [b,∞) = [a + b,∞).

Thus, additivity implies that f (a + b) = f (a) + f (b), for f (a) ≥ a.
It is known that this functional equation implies that f (a) = k · a; see, e.g., [1].

The condition a ≤ f (a) implies that k ≥ 1.

What if we assume scale-invariance. Here,

λ · [a,∞) = [λ · a,∞).

Thus, scale-invariance means f (λ · a) = λ · f (a) for all λ > 0 and a. In particular:

• for a = 1, we get f (λ) = k+ · λ, where k+
def= f (1); and

• for a = −1, we similarly get f (−λ) = k− · λ, i.e., f (x) = (−k−) · x .

What if we assume shift-invariance. Here,

[a,∞) + c = [a + c,∞).

Thus, shift-invariance means that f (a + c) = f (a) + c. In particular, for a = 0, we

get f (c) = a0 + c, where we denoted a0
def= f (0). Since f (0) ≥ 0, we have a0 ≥ 0.

4 What if We only Know the Upper Bound

Description of the case. Suppose that we only know the upper bound a. In this case,
the set of possible gains is the infinite interval (−∞, a]. What is the price

g(a)
def= v((−∞, a])

that we should pay for this situation?

What if we assume additivity. For infinite intervals,
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(−∞, a] + (−∞, b] =)(−∞, a + b].

Thus, additivity implies that g(a + b) = g(a) + g(b), for g(a) ≤ a.
It is known that this functional equation implies that g(a) = k · a; see, e.g., [1].

The condition g(a) ≤ a implies that k ≤ 1.

What if we assume scale-invariance. Here,

λ · (−∞, a] = (−∞, λ · a].

Thus, scale-invariance means g(λ · a) = λ · g(a) for all λ > 0 and a. In particular:

• for a = 1, we get g(λ) = k+ · λ, where k+
def= g(1); and

• for a = −1, we similarly get g(−λ) = k− · λ, i.e., g(x) = (−k−) · x .

What if we assume shift-invariance. Here,

(−∞, a] + c = (−∞, a + c].

Thus, shift-invariance means that g(a + c) = g(a) + c. In particular, for a = 0, we

get g(c) = a0 + c, where we denoted a0
def= g(0). Since g(0) ≤ 0, we have a0 ≤ 0.
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Why Do People Become Addicted:
Towards a Theoretical Explanation
for Eyal’s Experiment-Based Hook
Model

Christopher Reyes and Vladik Kreinovich

Abstract Why do people become addicted, e.g., to gambling? Experiments have
shown that simple lotteries, in which we can win a small prize with a certain proba-
bility, and not addictive. However, if we add a second possibility—of having a large
prize with a small probability—the lottery becomes highly addictive to many partic-
ipants. In this paper, we provide a possible theoretical explanation for this empirical
phenomenon.

1 Formulation of the Problem

Addiction: bad and not so bad. The word “addiction” has a negative connotation:
people get addicted to gambling, to drugs, to alcohol, to smoking: they try it first,
and then they feel the urge to continue the corresponding habit. However, from the
psychological viewpoint, the same habit-forming can have (and often has) positive
effects as well: people get addicted to healthy lifestyle, like eating healthy food and
exercising regularly, people get addicted to their creative activities ranging from art
andmusic to scientific research, people fall in love with each other—which is usually
a good type of addiction.

For bad addiction, we need to understandwhere it comes from sowe can prevent it
and—if it already happened—cure it. For good addition, we also need to understand
where it comes from, so that we can have more people living healthy lives, we can
have more people exploring their creativity, etc. In both cases, it is important to
understand where addiction comes from, i.e., how we form the resulting habits.

Eyal’s experiments and the resulting Hook Model. Understanding can mean dif-
ferent things. We can discuss what physiological processes occur in the brain when
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a person becomes addicted. In the future, this may help us prevent the formation of
bad habits and promote formation of good ones, but as of now, the results of such an
analysis are somewhat far away from practical applications. In general, we are not
yet able to use this knowledge to prevent or promote habit forming.

More practical results have reasonably recently come from a different study: an
analysis of which situations cause addictions and which do not—without the physi-
ological analysis of how exactly addiction is formed in the brain. Such studies have
indeed been performed, they are describe in Nir Eyal’s book; see [1] and references
therein. Eyal’s results can be best explained on the example of gambling addiction—
since in gambling (as opposed to other bad addictions), rewards and risks can be
clearly stated in objective numerical form.

Eyal started with a seemingly natural simple gambling model, in which a person
gets:

• a reward r with some probability p, and
• no reward at all with the remaining probability 1 − p.

This can be a simplified model of playing a lottery, this can be a simplified version
of playing the slot machine at a casino, etc. Somewhat surprisingly, this seemingly
natural arrangement did not lead to any serious habit forming—participants played
a little bit, but did not form a habit of playing.

The situation changed drastically when he introduced a somewhat more realistic
description of a gambling situation, in which there are two levels of rewards:

• a very large reward R that happens with a very low probability p�, and
• a medium-size (actually, small) reward r that happens with a medium-size proba-
bility pm .

For example, in a lottery where a lottery ticket costs 1 dollar, many people get a $5
prize and very few get a very big, multi-million dollar prize. In simulated situations,
a significant proportion of participants became addicted to playing this lottery: they
eagerly participated in it again and again.

What we do in this paper. In this paper, we provide a natural explanation for this
phenomenon: namely, we explain why lotteries with two levels of rewards are more
addictive.

2 Analysis of the Problem and the Resulting Explanation

Naive picture of the situation. In order to understand the situation, let us start with
the first—as it turns out, naive—description of the situation. In this (naive) picture,
when people engage in some repeated financial arrangements, they expect to earn
some money. This is why people invest money in stocks or place them in a savings
account—this way they expect to gain more than they invested. This is true for
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investments, but can this explain why people play lotteries in the first place? As it
turns out, not really.

Indeed, if a person plays the above-described simple lottery—in which we get a
reward r with probability p—a large number of times N , then we get this reward
in approximately p · N cases, so the overall reward is equal to p · N · r . To get this
reward, the person needs to buy N lottery tickets. So, if we denote the price of a
ticket by t , the person spends the amount t · N .

In this picture, a person should play the lottery only if his/her expected gain is
larger than his/her investment, i.e., if p · N · r > t · N . But where can this extra
money come from? The only possibility is for this money to come from the lottery
organizers, but this does not make sense: why would the lottery organizers give away
money? Lotteries usually earn money for the state, not lose them. So, this naive
picture not only does not explain why people get addicted, it does not even explain
why people play lotteries in the first place.

A similar conclusion can be made for any lottery i , in which we get:

• money reward ri1 with probability pi1,
• money reward ri2 with probability pi2, etc.,

In this case, after N plays, we get:

• money reward ri1 approximately N · pi1 times,
• money reward ri2 approximately N · pi2 times, etc.

So, the overall reward is equal to

N · pi1 · ri1 + N · pi2 · ri2 + · · · ,

and the average reward per play is equal to

pi1 · ri1 + pi2 · ri2 + · · · (1)

Unless the lottery organizers give out money for free, this expected amount cannot
be larger than the price of a lottery ticket. Thus, from this naive viewpoint, people
should not play lotteries at all—but they do. Why?

Amore adequate picture of the situation.Researchers have been analyzing human
decision making for many decades. In particular, they analyzed a question of how a
rational person should make decisions. Their conclusion (see, e.g., [2, 3, 5, 8–11]) is
that a rational person, when presented several situations i in which he/she will get:

• money reward ri1 with probability pi1,
• money reward ri2 with probability pi2, etc.,

should select an alternative i for which the following expression is the largest possi-
ble:

ui = pi1 · u(ri1) + pi2 · u(ri2) + · · · , (2)
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for some function u(r) (called utility function) describing this person’s preferences.
This formula is similar to the above “naive” formula (1), themain difference is that

instead of computing the expected value (1) of the monetary gain ri j , we compute the
expected value of the utility u(ri j ) of this gain—which, crudely speaking, describes
the people “degree of happiness” upon receiving such gain.

That the degree of happiness is not directly proportion to the monetary amount
makes sense. If it was, then every time you get an extra $1, you would experience
the same increase in happiness. In reality, however:

• if you have no money and someone gives you $1, then you become very happy;
• on the other hand, if you already have $100 and someone gives you $1, then your
degree of happiness does not change that much.

In other words, the perceived difference between having $0 and $1 is much higher
than the perceived difference between having $100 and $101.

Empirical studies found that this aspect of human behavior can be reasonably well
described if we use the square root utility function u(r) = √

r ; see, e.g., [4, 7]. In
this case, indeed, the difference u(101) − u(100) = √

101 − √
100 ≈ 0.05 is much

smaller than the difference u(1) − u(0) = √
1 − √

0 = 1.
In this approach, the person is willing to play a lottery in which he/she gains r j

with probability p j , j = 1, 2, . . . if his/her expected utility

p1 · √
r1 + p2 · √

r2 + . . .

is larger than the utility
√
t corresponding to the ticket price t :

p1 · √
r1 + p2 · √

r2 + . . . ≥ √
t . (1)

Thismoreadequatemodel still doesnot explainwhypeopleplay lotteries. Indeed,
as one can easily check, the function f (x) = √

x is strictly concave—since its second
derivative is negative. Concaveness means that for all possible convex combinations
r = ∑n

i=1 pi · ri , where pi ≥ 0 and
∑n

i=1 pi = 1, we have

n∑

i=1

pi · f (ri ) ≤ f

(
n∑

i=1

pi · ri
)

.

Strict concaveness means that unless one of the values pi is equal to 1 and other to
0, we have a strict inequality:

n∑

i=1

pi · f (ri ) < f

(
n∑

i=1

pi · ri
)

.
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In particular, for our case,when f (r) = √
r andwhen someprobabilities are different

from 0 and 1, we get
n∑

i=1

pi · √
ri <

√
√
√
√

n∑

i=1

pi · ri . (2)

As we have mentioned, the folks organizing the lottery are not willing to lose money,
so the average gain must be smaller than or equal to the price t of the lottery ticket:

n∑

i=1

pi · ri ≤ t. (3)

By taking square root of both sides of this inequality, we conclude that:

√
√
√
√

n∑

i=1

pi · ri ≤ √
t . (4)

Combining (2) and (4), we conclude that

n∑

i=1

pi · √
ri <

√
t,

i.e., that the condition (1) is never satisfied—and thus, that rational people should
not play lotteries.

How can we explain that they not only play lotteries once in a while, but that
many folks even become addicted to playing them?

Let us use an even more adequate model. The fact that the above model does
not always explain human behavior means that we need to consider an even more
adequate model of human behavior—a model that would take into account some
additional features of human behavior.

One possibility for providing such more adequate model comes from the fact that
the above model (implicitly) assumes that people adequately estimate the probabil-
ities of different events. In reality, people tend to overestimate small probabilities.
This phenomenon is described, e.g., in [4]. In [6, 7], provide a possible theoretical
explanation for this phenomenon. Based on this explanation, provide a formula relat-
ing a subjective probability ps of an event—i.e., the values that people use to make

decisions—and the actual probability p: ps = 2

π
· arcsin(√p). For small value p,

this means ps = cp · √
p for some constant cp.
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Thus, when making decisions, people maximize the expression

n∑

i=1

psi · u(ri ) = cp ·
n∑

i=1

√
pi · √

ri = cp ·
n∑

i=1

√
pi · ri .

So, they play the lottery if

cp ·
n∑

i=1

√
pi · ui > cp · √

t,

i.e., equivalently, if
n∑

i=1

√
pi · ui >

√
t . (5)

For a simple lottery, this means that
√
p · r >

√
t . Since for a simple lottery, we

must have p · r ≤ t—otherwise the lottery organizers will be losing money—the
inequality

√
p · r >

√
t is not possible.

This explains why simple lotteries are not addictive.

What about more complex lotteries. For an above-described more complex lottery,
with two levels of rewards, when p� · R + pm · r ≈ t , we have

(
√
p� · R + √

pm · r)2 = p� · R + pm · r + 2
√

(p� · R) · (pm · r) > t.

So, in this case,
√
p� · R + √

pm · r >
√
t .

A similar inequality holds if we consider three or more different reward levels.
This explains why more complex lotteries are addictive.
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Why Decimal System? Why
Communities with More Than 150 Folks
Tend to Split? New Consequences
of the Seven Plus Minus Two Law

Leonardo Orea Amador and Vladik Kreinovich

Abstract Why are we using the decimal system to describe numbers? Why all over
the world, communities with more than 150 folks tend to split? In this paper, we
show that both phenomena—as well as some other phenomena—can be explained
if we take into account the seven plus minus two law, according to which a person
can keep in immediate memory from 5 to 9 items.

1 Formulation of the Problem

In this paper, we consider two seemingly unrelated questions, and we show that,
somewhat surprisingly, they seem to have a common explanation.

Why decimal system? We currently use decimal system, but why? To us now, this
may seem natural, but in the past, many different systems were used:

• Babylonians used 60-based system;see, e.g. [1, 3, 10, 11];
• Mayans used 20-based system; see, e.g., [1, 3, 8–11], etc.

For some reason, only the decimal system survived—why? A usual argument is that
it is related to the fact that we have ten fingers on two hands, but the same logic
explained 5-based system—when counting on one hand, or 12-based system—when
we use knuckles instead of fingers.

Why communities with more than 150 folks tend to split. There is a sociological
phenomenon that communities that have more than 150 folks tend to split into sub-
communities; see, e.g., [5–7]. Thismagic number 150was observed inmany different
cultures:
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• Researchers looked at dozens of hunter-gatherer societies for which we have his-
torical evidence, including Walbiri from Australia, Tauade from New Guinea,
Ammassalik from Greenland, and Ona from Tierra del Fuego, Argentina. In all
these societies, the average number people in a village is about 150.

• Throughout centuries, it was confirmed again and again that the largest size of a
functional military fighting unit is about 150. In the beginning, this might have
been a limitation on communication, but nowadays that communication is easy,
this limitation remains—it is the limit on the ability of a large group of people to
coordinate their actions and to successfully act together.

• This magic number is confirmed by the experience of Hutterites, a religious group
similar to Amish and Mennonites, that when a community becomes larger than
150, it loses coherence and needs to be split into several smaller groups.

• Several manufacturing companies found out that 150 is the largest size for a suc-
cessful coherent unit.

Why?
A possible explanation is that this is how our brain is set up—to be able to only
handle communications with groups not exceeding 150 folks. But this leaves another
question: why is our brain set up this way? How can we explain it by using some
other well-studied phenomena?

2 Seven Plus Minus Two Law: A Brief Reminder

To explain both phenomena, we will use the seven plus minus two law, according to
which a person can keep in immediate memory from 5 to 9 items. Similarly, when
we classify things, we divide them into 5 to 9 groups. For some folks, it is 5, for
some, it is 9; see, e.g., [13, 15] (see also [2, 17]).

Let us show how this law can explain both phenomena.

3 Why Decimal System: A Possible Explanation

Why do we use 10-based arithmetic? Up to nine objects some of us can keep in mind.
Ten is the smallest number of objects which cannot be immediately remembered.We
thus need to keep track of it, no matter how many smart people we use—we need to
write it down.

This explains why 10 is, at present, the usual base for representing numbers.
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4 Why Communities with More Than 150 Folks Tend
to Split: A Possible Explanation

Zipf law. To explain this phenomenon, we need to also use another known law: Zipf
law. This law was first discovered in linguistics: if we sort words by frequency and
denote the frequency of the most frequent word by f , then:

• the second frequent word has frequency f/2,
• the third frequent word has frequency f/3, etc.

Similar dependence has been observed for many phenomena—such as distribution
of wealth, etc.; see, e.g., [4, 12].

Let us apply Zipf law to our situation. In a big group, we cannot pay equal attention
to all themembers of the group. So,wepaymore attention to some folks, less attention
to others. It is natural to expect that the same Zipf law will be applicable here: that
if for each person P , we sort members of the group in the decreasing order of P’s
attention, then:

• the person most involved with him/her receives full attention,
• the next involved requires 1/2 of the attention,
• then 1/3, etc.

Overall, in a group of n folks, we get 1 + 1/2 + · · · + 1/n full attentions. It is known
that this sum is approximately equal to ln(n).

When n gets larger than approximately 150, this sum exceeds 5—so for some
people, involvement with everyone in the community becomes impossible, and the
community naturally splits.

5 Two Additional Related Phenomena

The same seven plus minus two law can explain other phenomena as well.

First phenomenon: compensation recommended by the Bible. According to
Chap.5 of the Book of Numbers, if a person is found guilty:

• this person should not only pay the damages,
• the guilty party should also pay an additional 1/5 of the damage amount as a
compensation.

How this can be explained. To prevent people from wrongdoing, a natural idea is
to institute an additional penalty rather than to require simply to return back what
was wrongly taken. So, this additional penalty should not be insignificant, it should
be felt by the guilty party.
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On the other hand, the general trend in the Bible—although there are exceptions—
is that a penalty should fit the crime, and thus, that it should not be to harsh. Thus,
the additional penalty it should not be too excessive. In other words, this additional
penalty should be equal to the smallest amount which will be felt by the guilty party.

What is this minimal-felt amount? In line with the general seven plus minus two
law, depending on a person, this amount is between 1/5 and 1/9 of the whole. If we
make it 1/9—or any amount smaller than 1/5—this penalty will not be felt by those
for whom this number is 5. So, the smallest amount which is felt by all possible
wrongdoers is 1/5—and this is exactly what the Bible recommends.

Second phenomenon: rating the dates. Another interesting phenomenon is that
women on dating sites rate 85% of men as below average in attractiveness; see, e.g.,
[14, 16].

How this can be explained. According to [14, 16], women want the best partners.
Since, on average, they divide possible partners into 7 groups, this group of “best"
partners is indeed, on average, 1/7 of all potential dates.

Thus, indeed, on average 1 − 1/7 = 6/7 ≈ 85% of possible partners are dis-
missed as not good.
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Lev Landau’s Marital Advice Explained

Olga Kosheleva and Vladik Kreinovich

Abstract Nobelist physicist Lev Landau was known for applying mathematical
and physical reasoning to human relations. His advices may have been somewhat
controversial, but they were usually well motivated. However, there was one advice
for which no explanation remains—that a person should not marry his/her first and
second true loves, and only start thinking about marriage starting with the third true
love. In this paper, we provide a possible Landau-style motivation for this advice.

1 Formulation of the Problem

Who was Lev Landau. Lev Landau was a Nobelist physicist.
In addition to his physics discoveries—and to a popular physics textbook he co-
authored [3]—he was also well known for applying reasoning from mathematics
and physics to human relations.

Sometimes, his advice made perfect sense. In some cases, Landau’s advice about
human relations made perfect sense—and if the audience did not understand the
reason for this advice, he was always ready to provide reasonably convincing expla-
nations.

For example, he claimed that there is an optimal distance at which a beautiful
woman’s face is the most beautiful. A similar statement about enjoying paintings is
a known fact—for each painting, there is usually an optimal distance at which this
painting looks the best. Because of this phenomenon, in an art museum, true con-
noisseurs follow a strange-looking trajectory: e.g., staying closer to smaller paint-
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ings while moving further away when a painting is larger, staying further away from
impressionist painting but closer to realistic ones, etc.

However, for women’s faces, the same conclusion sounded unusual. Landau’s
explanation for this advice was very simple:

• when you too far away, you cannot see anything but a blur, and
• when you are too close, you only see one feature and not the whole face, and thus,
you cannot appreciate the full beauty.

Thus, there must be a distance at which the beauty is the most visible.

Strange marital advice. While most of Landau’s non-physics advices were
explained—usually, by Landau himself—one of Landau’s advices remains unex-
plained. The advice was very straightforward—although shocking at the time when
the usual advice was marrying your true love and live happily ever after. The advice
was not to marry your first true love, and not to marry your second true love, and
only start considering marriage starting with the third true love; see, e.g., [7].

A possible reason why this advice remains unexplained is that he gave this advice
to his teenage niece. She was so shocked by this advice that she did not even ask
for the reason. As she writes in her memoirs, she even pretended to experience her
first true love with some imaginary person, so that her uncle would be happy that she
followed his advice.

What is the reason for this advice?Knowing Landau, hewas a very rational person:
whatever he said was usually well justified. So this unusual marital advice puzzled
us for some time.

Now we finally came up with a reasonable explanation, an explanation that we
are describing in this paper.

2 Our Explanation

Main idea. Every person has some criteria—formal or informal—for selecting a
spouse. The personwants to select someonewho is the best according to this criterion.
This sounds straightforward, but the problem is that to really understand the person,
to check compatibility, one needs to get close to this person, spend some time with
him/her. It is usually not possible to try it with several people at the same time, but
if you spend some time with one person, and then decide to try someone else—that
first person whom you ditched will be, in general, reluctant to re-start the relation.

So, we encounter a known problem known as a secretary problem, or as a fussy
princess problem; see, e.g., [2, 4, 8]. Let us describe this problem in its princess
form.

Fuzzy princess problem: formulation. Suppose that n princes seek the hand of a
beautiful princess. They come to her and propose one by one. She needs to select the
best prince to marry.
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In the ideal-for-the-princess world, she would consider all of them, and then select
the one that she likes the best (or, if she is a patriotic princess, the one that will bring
the most beneficial alliance to her country). But the problem is that once a prince
makes a proposal, he expects an immediate (or almost immediate) answer. If this
answer is No, the prince’s pride does not allow him to come back if the princess
changes her mind.

Provided that the princes arrive in random order, what is the best strategy for the
princess that will, on average, leads to the best possible choice?

Fuzzy princess problem: solution. The solution to this problem is known, and it
is somewhat non-intuitive: for reasonably large values n (and actually already for
moderate values n), the best strategy is:

• to say No to the first n/e suitors, and then
• to select the first one who is better than the first n/e candidates (and if none is
better, and if there is a need for a princess to marry, marry the last one).

Conclusion for Landau’s advice. From this viewpoint, if we know how many true
loves a person will encounter in her (or his) life, then a reasonable idea is indeed:

• to just enjoy the first n/e true loves (without thinking of marriage) and
• to only start considering marriage after that.

But how can we know this number n?

Where do we get the number n. A princess may select one of the hundred princes
whom she meets for the first time, this is how princesses do it in fairy tales.

For example, she may be motivated by the desire to bring a good alliance to
her country. After all, at some point, the notorious Russian tsar Ivan the Terrible
made a marriage proposal to none else but the great British Queen Elizabeth—not
because he was in love with her (they never met, and I am not sure if even ever saw a
picture of her), but because he believed—and there was some reason for that—that
by combining their empires, they could easily defeat their enemies; see, e.g., [1].

With us common folks, the situation is different. We want a spouse that will be an
important part of our lives, we do not usually want to marry an unknown stranger.
So, in contrast to the princess, we only want to marry someone whom we know very
well. And how many people can we know well?

In psychology, there is a known “several plus minus two” law, according to which
a person can only simultaneously be seriously thinking about several plus minus
two objects, i.e., between five and nine, on average seven (how many is different for
different individuals); see, e.g., [5, 6].

Realistically, when you have been close to a person for some time, when he or
she was your true love, the memories of that person stays in your heart forever. So,
during the lifetime, we can only have seven plus minus two true loves—on average,
seven. In other words, n = 7± 2.
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This explains Landau’s marital advice. For n = 7, the value n/e is between 2 and
3. Moreover, if we dismiss the rarer extreme cases n = 5 and n = 9, for all three
intermediate values n = 6, n = 7, and n = 8, the ratio n/e is between 2 and 3.

For all these values n, the advice to start thinking of marriage only after n/e true
loves means indeed to start thinking about marriage only starting with the third true
love. (And actually, the value n = 9 for which n/e is between 3 and 4 also kinds of
fits into the same advice, since here also we skip the first two true loves—the only
difference is that for n = 9, we skip the third true love as well.)

So, we have indeed explained Landau’s advice.
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Why Too Much Interaction Between
Different Parts of the Brain Leads
To Unhappiness

Ricardo Alvarez, Yamel Hernandez, and Vladik Kreinovich

Abstract Reasonably recent experiments show that unhappiness is strongly cor-
related with the excessive interaction between two parts of the brain—amygdala
and hippocampus. At first glance, in situations when outside signals are positive,
additional interaction between two parts of the brain that get signals from different
sensors should only reinforce the positive feeling. In this paper, we provide a simple
explanation of why, instead of the expected reinforcement, we observe unhappiness.

1 Formulation of the Problem

General problem. Sometimes, we are in a good mood, and sometimes, we are in a
bad mood. In some cases, our mood is determined by the external circumstances, but
sometimes, a person who has everything is still unhappy. How can we make people
happier?

To be able to do this, it is important to understand what brain processes cause
different moods. If we learn why people become unhappy, we may be able to help
them become happier.

This problem is very complex. The brain is a very complex structure, with many
processes happening at the same time. Because of this complexity, until recently, it
was not clear which brain processes are correlated with mood.

This complexity is also affected by the fact that the usual ways of studying brain
activities—via Magnetic Resonance or other remote methods—provide information
about the average activity of reasonably large groups of neurons, and it looks like
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this averaging filters out possible correlations—whose discovery probably requires
more localized techniques.

More localized measurements are available. The possibility to use more localized
techniques of brain study comes from the study of epileptic patients.

From the engineering viewpoint, epilepsy means excessive positive feedback,
excessive amplification. Electric signals in the brain gets amplified—as they are
amplified in all systems, to compensate for the natural signal decrease. The problem
is that if this amplification is too high, the signal passing to and fro gets constantly
amplified more and more—until it exceeds the safety limits and starts damaging the
brain. This amplification is usually happening in one specific small part of the brain.
To help the patient, it is therefore important to find the location of this area.

The brain is very important, we do not want to affect its functions, so we must
pinpoint the defective area as accurately as possible. Such accuracy is often not pos-
sible if we only use non-invasive techniques. So, to help with this location, electrodes
are implanted in several places in the suspected defect area, so that by measuring the
corresponding brain activity, we will be able to very accurately pinpoint the defect
area.

As a side effect, we also have a very localized description of brain activity.

Arecent breakthrough. A recent (2018) study [3] analyzed this activity and found—
for the first time—brain processes that clearly correlated with the person’s mood.
Namely, it turned out that the person’smood is determined by the interaction between
two specific parts of the brain: amygdala and hippocampus.

Unexpected feature. The researchers expected to see how—directly or indirectly—
signals related to external factors affect the person’s mood. This was indeed found.
However, there was also an unexpected discovery—that for the same level of external
signals, themoodwas strongly affected by the degree of interactionbetween the above
two parts of the brain: too much interaction between these two different parts of the
brain leads to unhappiness.

Why? A natural question is: why? In this paper, we provide a possible explanation
for this unexpected empirical phenomenon.

2 Analysis of the Problem and Resulting Explanation

Let us describe a simple mathematical model. Each part of the brain receives
signals from our sensors, from different parts of the body, etc. Some of these signals
are good—so they should lead to more happiness. Let us denote the overall level
of positivity of signals coming to amygdala by p1, and of the signals coming to
hippocampus by p2.

In general, different parts of the brain process different signals. The overall mood
should depend on all these signals. So, it makes sense that there are interactions
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between different parts of the brain—that enable us to combine these signals and
thus, get the signal reflecting the overall mood.

Interaction means that the signal coming from one part of the brain affects the
signal in the other part. Thus, the overall positivity level s1 at the amygdala is deter-
mined not only by the signals p1 coming to it from the corresponding sensors, but
also by the signals coming to it from the hippocampus. The higher the activity level
s2 at the hippocampus, the more signals come to amygdala, so we can say that

s1 = p1 + k12 · s2, (1)

where the coefficient k12 describes the degree of interaction between these two parts
of the brain.

Similarly, the resulting activity level s2 of the hippocampus is determined not only
by the signals p2 coming to it from the corresponding sensors, but also by the signals
coming to it from the amygdala. The higher the activity level s1 at the amygdala, the
more signals come to hippocampus, so we can say that

s2 = p2 + k21 · s1, (2)

where the coefficient k21 describes the degree of interaction between these two parts
of the brain.

At first glance, this cannot explain the empirical fact. At first glance, it looks like
our model (1)–(2) cannot explain the observed effect: based on the equations (1) and
(2), the larger the degree of interaction between the two corresponding parts of the
brain, the more positive will be the overall sense of happiness.

A deeper analysis leads to the desired explanation. Let us show, however, the
deeper analysis of our model leads to the desired explanation.

Indeed, if we plug in the right-hand side of the formula (1) instead of s1 in the
formula (2), we conclude that

s2 = p2 + k21 · (p1 + k12 · s2) = p2 + k21 · p1 + k21 · k12 · s2. (3)

Moving all the terms containing the unknown s2 into the left-hand side, we conclude
that

(1− k21 · k12) · s2 = p2 + k21 · p1, (4)

hence

s2 = p2 + k21 · p1
1− k21 · k12 . (5)

Similarly, if we plug in the right-hand side of the formula (2) instead of s2 in the
formula (1), we conclude that

s1 = p1 + k12 · (p2 + k21 · s1) = p1 + k12 · p2 + k12 · k21 · s1. (6)
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Moving all the terms containing the unknown s1 into the left-hand side, we conclude
that

(1− k12 · k21) · s1 = p1 + k12 · p2, (7)

hence

s1 = p1 + k12 · p2
1− k12 · k21 . (8)

When the interaction becomes too intensive, namely, when k12 · k21 > 1, then even
when the signals p1 and p2 are positive, the resulting states s1 and s2—as described
by the formulas (5) and (8)—become negative, i.e., indeed corresponding to unhap-
piness.

This explains the above-described empirical phenomenon.

Comment. From the mathematical viewpoint, this explanation is similar to a
known explanation of another phenomenon—that an excess of empathy may lead to
unhappiness—see, e.g., [1, 2, 4–6].
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Gödel’s Proof of Existence of God
Revisited

Olga Kosheleva and Vladik Kreinovich

Abstract In his unpublished paper, the famous logician Kurt Gödel provided argu-
ments in favor of the existence of God. These arguments are presented in a very
formal way, which makes them difficult to understand to many interested readers.
In this paper, we describe a simplifying modification of Gödel’s proof which will
hopefully make it easier to understand.We also describe, in clear terms, why Gödel’s
arguments are just that—arguments—and not a convincing proof.

1 Formulation of the Problem

What Gödel did. In his originally unpublished paper, the famous logicianKurtGödel
provides arguments in favor of the existence of an object that can be interpreted as
God; see [5], see also [1–4, 6–9].

Problems with the original Gödel’s proof. Gödel’s proof is somewhat over-
complicated and, as a result, somewhat difficult to understand. It is therefore desirable
to come up with a simplified version of this proof.

The fact that this proof is presented in a complicated way also makes it difficult to
understand whether Gödel’s arguments are simply arguments or a convincing proof.

What we do. In this paper, we provide a modified (namely, simplified) version of
Gödel’s proof. This simplification, hopefully, makes it easier to understand the proof
itself—and also to understand why this is not a fully convincing proof.
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2 Intuitive Idea

Idea. Intuitively, God is an object that has all good properties and no bad properties.

We need to formalize this idea. Let us show how to formalize this idea.

3 Towards Formalizing This Idea

Possible worlds. Our knowledge about the world is incomplete. This means that we
usually do not have full information about the world. Even if we have a reasonably
full information about the current state of the world, we may not be sure about its
future state. Thus, there are several possible descriptions of the world which are all
consistent with our knowledge. Such descriptions are usually called possible worlds.

If a statement S is true in all possible worlds, we say that it is necessarily true and
denote it by �S. If a statement holds in at least one of the possible worlds, then we
say that this statement is possibly true and denote it by ♦S.

Good and bad properties. In each possible world, there are objects x , x ′, etc. that
may have different properties ϕ, ψ , etc. Some properties are good; we will denote
this by g(ϕ). Other properties are bad; we will denote this by b(ϕ).

It is reasonable to assume that goodness and badness are absolute—if a property
is good in one world, it is good in every world—same for bad properties.

Intuitively, if a property is good, then this property cannot be bad, and its negation
cannot be good:

g(ϕ) → ¬b(ϕ) and g(ϕ) → ¬g(¬ϕ). (1)

Similarly, if a property is bad, then this property cannot be good, and its negation
cannot be bad:

b(ϕ) → ¬g(ϕ) and b(ϕ) → ¬b(¬ϕ) (2)

Formal implication versus meaningful implication. An important part of our
knowledge are if-then statements—knows as implications.

In mathematics, a statement “if A then B” if denoted by A → B. The general
meaning of such a statement in mathematics is that if A is true, then B is true too. If
A is false, then the implication has no limitation on B, so the statement A → B is
true. If A is true, then B should be true. Thus, A → B means that either A is false
or B is true.

This sounds reasonable at first glance, but it leads tomeaningless implications. For
example, if it will not rain tomorrow in El Paso and a volcano Erebus in Antarctica
will be active, then the implication “if it will rain tomorrow in El Paso, then Erebus
will be inactive” is, in mathematical sense, true.

While this implication is mathematically true, from the commonsense viewpoint,
it is meaningless. Indeed, intuitively, “if A then B” means that if we make A true,
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then B also becomes true. However, if we force rain to fall in El Paso—e.g., by
seeding the clouds—if will not affect the Erebus volcano.

An intuitive meaning of a natural-language if-then statement is that once wemake
A true, B will always be true, i.e., that the implication A → B should be true in all
possible worlds—and not just in our world as in the usual mathematical definition.
This leads to the following formula:

ϕ ⇒ ψ
def= �(∀x(ϕ(x) → ψ(x))) (3)

If this formula holds, we will say that ϕ necessarily implies ψ .

Relation between good, bad, and meaningful implication. Intuitively, if ϕ is a
good property, and ϕ necessarily implies ψ , then the property ψ should also be
good:

(g(ϕ)& (ϕ ⇒ ψ)) → g(ψ) (4)

Similarly, if ϕ is a bad property, and ϕ necessarily implies ψ , then the property ψ

should also be bad:
(b(ϕ)& (ϕ ⇒ ψ)) → b(ψ). (5)

4 First (Preliminary) Result

Formulation of the result. The first result—proven byGödel—is that for every good
property ϕ, in some possible world, there is an object that satisfies this property.

Proof. Indeed, let us assume that this statement is not true. This means that in each
world, for each object x , the statement ϕ(x) is false. By definition of the usual
implication, this means, in particular, that in every world, for every object x , we have
ϕ(x) → ¬ϕ(x). By definition of necessary implication, this means that ϕ ⇒ ¬ϕ.
Since the property ϕ is good, by formula (4), it implies that its negation ¬ϕ is also
good—but, according to formula (1), if a property is good, is negation cannot be
good.

This contradiction shows that our assumption cannot be true. Thus, there must
exist a possible world in which some object x satisfies the property ϕ.

5 It Is Good to Have Good Objects in All Possible Worlds

Here we are modifying (and simplifying) Gödel’s proof. Up to now, we were
following Gödel, but now, we will modify and simply his arguments.

Idea. It would be nice to have objects satisfying a good property in all possible
worlds.
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How to formalize this idea. The above condition can be described as follows:

c(x)
def= ∀ϕ((g(ϕ)&♦∃yϕ(y)) → (�∃z ϕ(z)). (6)

Comment. The property c(x) actually does not depend on x , the variable x is added
solely for mathematical convenience.

This property is clearly good. The condition (6) is clearly good:

g(c). (7)

6 Second Result

Formulation of the result. The second result is that for every good property ϕ, in
every possible world, there is an object that satisfies this property.

Proof. Indeed, since the property c is good, according to the first result, it is true in
some possible world. Thus, in some world, we have an implication

∀ϕ((g(ϕ)&♦∃yϕ(y)) → �∃z ϕ(z)). (8)

This implication does not depend on the world, thus it is just true.
According to the samefirst result, for every good propertyϕ, there exists aworld in

which this property is true for someobject, thus♦∃yϕ(y). Thus, due to the implication
(8), we conclude that �∃z ϕ(z), i.e., that the object satisfying this property indeed
exists in all possible worlds.

7 What Is God?

Now we can formalize the informal definition of God. We want to say that an
object x is God (we will denote it by G(x)) is x has all good properties and no bad
properties:

G(x)
def= ∀ϕ((g(ϕ) → ϕ(x))& (b(ϕ) → ¬ϕ(x))). (9)

God is good. Intuitively, being God is a good property:

g(G). (10)

Conclusion. From the second result, we conclude that God exists in every possible
world.
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8 Word of Caution: Shall We All Run to a Place
of Worship?

Does this result convincingly prove that God exist? Not necessarily.
The problem is in the definition of necessary implication. The way this notion

is defined still enables us to make counterintuitive conclusions. Namely, if ψ(x) is
always true, then the implication ∀x (ϕ(x) → ψ(x)) holds in all possible worlds, so,
according to the above definition, we have ϕ ⇒ ψ .

For example, if ψ(x) is “the Sun will rise tomorrow”, then we get conclusion like
“animal sacrifices necessarily imply that the Sun will rise tomorrow”. This is not
what we intuitively mean by if-then rules, since whether the Sum rises or not clearly
does not depend on whether we make an animal sacrifice or not.

Amore adequate description is to only conclude that ϕ necessarily implyψ when,
in addition, it is possible that ψ will be false:

ϕ ⇒ ψ
def= �(∀x (ϕ(x) → ψ(x)))&♦∃x ¬ψ(x). (11)

However, if we use this more adequate definition in formula (4), we can now longer
prove the very first Gödel’s result—and thus, we are no longer able to conclude that
God exists.
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Blessings, God, Sacrifices: Possible
Rational Explanations of Biblical Ideas

Olga Kosheleva and Vladik Kreinovich

Abstract In this paper, we show that many seemingly irrational Biblical ideas can
actually be rationally interpreted: that God is everywhere, that we can only say what
God is not, that God’s name is holy, why cannot you bless as many people as you
want, etc. We do not insist on our interpretations, there probably are many others,
our sole objective was to show that many Biblical ideas can be rationally explained.

1 Formulation of the Problem

Many Biblical ideas look irrational. Many Biblical ideas sound irrational—at least
at first glance.

This can be expected: a religion cannot be fully rational. Of course, religion, by
definition, cannot be a fully rational enterprise, so some irrationality is natural.

What we do in this paper. However, what we plan to show in this paper is that many
seemingly irrational ideas can have rational explanations.

Howwe do it. Some of our explanations come from common sense, some come from
modern science—in which many seemingly counterintuitive ideas have been exper-
imentally confirmed and have become a solid foundation of relativity and quantum
physics; see, e.g., [3, 9].

Comment. We realize that from the theological viewpoint, our interpretations of
Biblical ideasmay be naive and oversimplified. Thismay be, but these interpretations
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do show that the Biblical ideas mentioned in this paper can be rationally explained—
and this was exactly our objective.

2 Where Is God?

Biblical idea. While this may be not explicitly stated in the Bible, but the feeling
one gets—and the feeling theologists get—is that, according to the Bible, God is (or
at least can be) simultaneously at some specific place and at the same time in other
places, probably even everywhere.

In the Reform Judaism prayerbook, this idea is described in the following poetic
form: “Thou art as close to us as breathing and yet art farther than the farthermost
star” [1].

At first glance, this sounds counterintuitive. From the viewpoint of common sense,
this is not rationally possible: if an object (or a person) is located in one place, the
same object or person cannot be at the same time located at some other place.

However, this is-everywhere idea is in perfect agreement with modern science.
In Newtonian physics, indeed, every particle was supposed to be limited to a specific
location. Not so in quantum physics, where each particle is described by a so-called
wave function ψ(x) that describes the probability with which this particle can be
found at different locations. Specifically, for each spatial region S, the probability to
find the particle in this region is equal to the integral

∫
S |ψ(x)|2 dx [3, 9].

The impossibility to exactly locate a particle is a part of Heisenberg’s uncertainty
principle, one of the main principles of quantum physics. According to this principle,
the more accurately we try to measure the particle’s location, the more momentum
we should add to the particle, and this momentum brings the particle out of that
location.

Moreover, according to quantum physics, a free particle in an empty space—
which, in Newtonian physics, would just continue going in the same direction with
the same speed—actually spreads out and its location becomesmore andmore blurred
[3, 9].

In summary, from the viewpoint of modern physics, not having a specific
location—i.e., in effect, being in different places at the same time—is actually a
typical behavior of particle and, more generally, of all objects for which quantum
effects cannot be ignored.

3 How Can We Characterize God?

Maimonides’ interpretation of the Biblical idea. According to the medieval the-
ologist Maimonides [6], we cannot claim that God has any positive quality, God can
only be characterized by negative qualities: God is not finite, God is not mortal, etc.
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Interestingly, similar ideas were developed by Islamic theologists as well [10].

How canwe interpret this in rational terms?Maimonides’s interpretation is some-
what similar to the belief of many physicists that no physical theory is perfect, that no
matter what theory we propose, eventually there will be an experiment whose results
would require somemodification of this theory [3, 9]. In other words, whatever prop-
erty the physical world satisfies—according to modern physics—this property is not
universally true, be it the original Netwon’s laws or the formulas of modern physics.

Thus, negative-qualities-only objects are actually very natural: the whole physical
world is like that.

But how is this related to God? Interestingly (and somewhat unexpectedly), this
seemingly natural physicists’ belief has an important computational consequence—
that if we use observations, we can drastically speed up the solution to many com-
putational problems— to the extent that we can solve many instances of NP-hard
problems (provably most complex problems, see [5, 7]) in feasible time [4]. Solving
hard problems is, in a nutshell, what creativity is about —at least creativity of scien-
tists and engineers—as opposed to routine activity of applying known algorithms to
easier problems. From this viewpoint, the negative-quality-only sequence of obser-
vations and experimental results serves as a source of creativity, which fits well with
the idea of God as an important source of creativity.

4 Even God’s Name Is Holy: What Does This Mean?

Biblical idea. According to the Bible, not only God itself if holy, God’s name is holy
as well. How can this be rationally interpreted?

A person performing good deeds can be holy, a place which helps to perform
good deeds can be holy, an object used in performing these deeds can be holy, but a
name sounds too abstract for that.

Our interpretation. Let us show that this idea can be rational too. As an analogy,
instead of performing good deeds, let us consider spreading knowledge—which, by
the way, is often necessary to be able to perform good deeds.

In the modern world, most of the knowledge we get is from published papers. For
a paper, a natural analogue of its name is this paper’s title. And, of course, the title of
the paper is often very informative by itself—moreover, e.g., in mathematics, often,
the title of the paper describes the exact formulation of the statement proven in this
paper, so unless one is interested in the proof itself, one does not even have to read
the paper—all the needed information is in the title already.

In this example, the “name” (title) of the paper conveys the information—and
thus, has the same property of conveying knowledge as the paper itself. It is therefore
reasonable rational to expect that the very name of a person can similarly convey the
same meaning of holiness as the person him/herself.
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5 What Is a Blessing?

Biblical ideas. The Bible is full of stories related to blessings. We still use this word,
but many places of the Bible shows that in the old days, this word had a different
meaning. For example, in the modern interpretation, if you bless someone, this does
not make it impossible for you to also bless someone else— but such an impossibility
is the main plot of the Biblical story of Isaac blessing Jacob instead of Esau.

How can we rationally explain this impossibility? What is a blessing—according
to the Bible? Can we interpret the Biblical understanding of this term so that the
above impossibility makes rational sense?

What is a blessing: our analysis and the resulting interpretation.What is a bless-
ing? In the Bible, a blessing somehow makes the blessed person more successful.
More rain comes to his/her land, fewer diseases, etc. If we take into account that,
according to modern science, these events can only be predicted with some proba-
bility, we can described the results of blessing as follows. Due to the blessing, the
actual values vi of the corresponding quantities become different from their expected
mean values mi—different in the direction that makes them more beneficial to the
blessed person. In these terms, the ability to bless is the ability to change the values
of these random quantities.

According to statistics (see, e.g., [8]), in general, if we have several independent
random quantities vi , then, with very high certainty, all possible combinations v =
(v1, . . . , vn) are characterized by the inequality

n∑

i=1

(vi − mi )
2

σ 2
i

≤ χ2, (1)

where σi is the corresponding standard deviation and the exact value of χ2 ≈ n
depends on the desired degree of certainty. From this viewpoint, if we make the
blessed person to be very successful, i.e., if we increase some of the differences
vi − mi way beyond the random-explained standard deviation σi , we thus restrict
the possibility to increase other differences v j − m j , since, according to the formula
(1), the weighted sum of the squares of these differences is bounded from above.

In this interpretation, blessing is a kind of a new physical field that somewhat
changes the probabilities of random events—and in this interpretation, the person’s
ability to bless is indeed limited.

This interpretation also explains the opposite of blessing—a curse, in which, vice
versa, the values of the related physical quantities make the cursed person less happy.
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6 Sacrificing the Best Animals Verus Darwin

Biblical idea and why it sound irrational. According to the Bible, we should
sacrifice our best animals to God. This seems to be inconsistent with selection,
where we constantly improve the quality of the animals by making the best ones
actively reproduce.

If instead of using the best horses, the best bulls, the best sheep to actively repro-
duce, we sacrifice them, this can probably lead to the effect opposite to selection—
namely, to the continual degradation of the stock. This cannot be what God had in
mind.

This can also be rationally explained. While we do have a lot of experience with
selection, we have significantly more experience with computer simulations of such
a selection—namely, the experience of using genetic algorithms and, more gener-
ally, evolutionary computations, a widely used and largely successful optimization
technique.

This experience has shown that one of the main problems with these algorithms—
as well as with many other optimization algorithms—is that we sometimes reach a
local maximum and get stuck there [2]. One of the main ideas of how to avoid getting
stuck in a local maximum is that if we get stuck, we get out—worsening the quality
of the current solution, but hoping this way to find solutions which are even better.
(One of the main techniques for doing this is known as simulated annealing; see,
e.g., [2].)

This is exactly what sacrificing the best bull achieves: deletes the local maximum
and thus, allows us to potentially progress to an even better cattle.

7 Fast-and-Feast

Biblical idea. The Bible pays a lot of attention to when we should fast and when we
should feast.

Taking into account that in those days, hunger was an acute problem, it seems to
make more sense to equally distribute whatever we have between different days—
just like those who have survived in hostile environments usually do. From this
viewpoint, the Biblical recommendation seems irrational. But is it?

Our explanation. Suppose that our goal is to increase the overall people’s satisfac-
tion. Let us describe this problem in precise terms.

The overall satisfaction can be obtained by adding up all the satisfaction levels
that people get every day. Let us denote:

• the overall amount of food that we have for a certain period of n days by F ,
• the minimal amount of daily food needed to survive by f0,
• the amount of food consumed on day i by fi , and
• the satisfaction of getting the amount of food f by s( f ).
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In these terms, the corresponding optimization problem has the following form:

• given the values F and f0 and the function s( f ),

• find the values f1, . . . , fn that maximize the overall satisfaction
n∑

i=1
s( fi ) under

the constraints
n∑

i=1
fi = F and fi ≥ f0 for all i .

In general, we can use the Lagrangemultiplier method to deduce the above constraint
satisfaction problem to the unconstrained problem of maximizing the value

n∑

i=1

s( fi ) + λ ·
(

n∑

i=1

fi − F

)

(2)

under the condition fi ≥ f0, where λ is an appropriate constant (known as Lagrange
multiplier).

According to calculus, if for some i , the maximum is attained inside the corre-
sponding domain, i.e., for fi > f0, then the partial derivative of the expression (2)
should be equal to 0, i.e., we should have s ′( fi ) = −λ, where s ′( f ) denotes the
derivative of the function s( f ).

Thus, for each day, the consumption fi should be equal either to f0 or to the value
fopt > f0 for which s ′( fopt) = −λ. With the exception of two degenerate cases when
F = n · f0 and when F = n · fopt, the optimal solution has to include both “fast”
days when fi = f0 and “feast” days when fi = fopt. And this is exactly what the
Bible recommends.

Comment. So why do people surviving in the hostile environments do not follow this
optimal strategy? This is easy to explain: these folks do not know how many days
they will be there before they are rescued.

Similar arguments explains the emphasis on Shabbat. Similar arguments can be
applied not only to the amount of food leading to the optimal overall satisfaction, but
also to the amount of daily effort leading to the optimal overall productivity. In this
case, the optimal strategy is to have days when we work intensely and days when we
rest and do not work at all—and this is exactly the Biblical idea of the Sabbath!

8 Conclusions and Future Work

Conclusions. In this paper, we showed that many Biblical ideas make rational sense.
Our objective was to provide several such examples.

Futurework. There are definitelymanymore examples in the Bible that can be ratio-
nally explained—and probably many examples that cannot be explained rationally.
It would be nice to analyze other Biblical ideas from this viewpoint.
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Why Model Order Reduction

Salvador Robles, Martine Ceberio, and Vladik Kreinovich

Abstract Reasonably recently, a new efficient method appeared for solving com-
plex non-linear differential equations (and systems of differential equations). In this
method—known as Model Order Reduction (MOR)—we select several solutions,
and approximate a general solution by a linear combination of the selected solutions.
In this paper, we use the known explanation for efficiency of neural networks to
explain the efficiency of MOR techniques.

1 Formulation of the Problem

We need to solve systems of differential equations. In physics, in engineering, in
many areas of biology, the corresponding phenomena are described by systems of
differential equations. Thus, to make predictions about these phenomena, we need
to solve such systems.

Solving systems of differential equations is difficult. In general, systems of differ-
ential equations are difficult to solve. This difficulty is easy to explain:

• In general, when we solve a system of N equations with N unknowns, the more
unknowns we have, the more difficult it is to solve this system.

• In systems of differential equations, the unknowns are the functions s(x). To
exactly describe a general function, we need to describe infinitely many different
numerical values—e.g., the values s(xi ) of this function at all possible points xi .
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The more accurately we want to represent a function, the more parameters we will
need. To get a good approximation to the desired function, we therefore need to solve
a system with a large number of unknowns—which requires a lot of computational
efforts.

Model Order Reduction. Reasonably recently, a new method appeared—known as
Model Order Reduction (MOR, for short) that helps to solve systems of differential
equations; see, e.g., [1]. In this method, once we have found several different solu-
tions s1(x), …, sn(x), we then look for approximate solutions s(x) which are linear
combinations of the known solutions, i.e., that have the form

s(x) = c1 · s1(x)+ . . .+ cn · sn(x)

for some coefficient ci .
In this approximation, we have only n unknowns, so when n is reasonably small,

we have a relatively easy-to-solve system of equations.

This method works, but why? The main idea of this method comes from linear
systems, where, once you have several solutions, any linear combination of these
solutions is also a solution. Many real-life systems are, however, non-linear. Inter-
estingly, MOR method works very well for many non-linear systems as well.

Why it works is not clear. In this paper, we provide a possible explanation for this
empirical success. This explanation is related to the explanation of another empirical
success phenomena—an explanation of why neural networks (see, e.g., [2–4]) work
well in many situations.

2 From Neural Networks to Model Order Reduction: Our
Explanation

Why neural networks: a reminder. One of the main original motivations for neural
networks came from the need to speed up computations—and from the observation
of how biological neural networks process data.

Computers can now perform many tasks that humans do: e.g., they can recognize
faces, control cars, etc. However, computers perform these tasks by using super-fast
processing units that perform billions of operations per seconds, while we humans
perform the same tasks by using neurons the fastest of which can perform at most 100
operations per second. The reason why a human brain can make important decisions
in a short period of time is that in the brain, there are billions of neurons that work
in parallel. As a result, during the time when one neuron processes data, all involved
neurons perform billions of computational steps.

What is the fastest way to set up such parallel computations? In parallel computa-
tions, first, all the processors perform some operations, then they perform some other
operations, etc. Computations are the fastest when each of these operations requires
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the smallest amount of computation time, and when the number of such consequent
operations is the smallest possible.

Which operations are the fastest? In a deterministic computer, the result of each
operation is uniquely determined by its inputs, i.e., in mathematical terms, is a func-
tion of these inputs. Out of all possible functions, linear functions are the fastest to
compute. However, we cannot use only linear functions: if all the processors were
computing linear functions of their inputs, then all we could compute are compo-
sitions of linear functions—which are also linear, while many real-life processes
are non-linear. Thus, in addition to linear functions, we should also compute some
non-linear functions.

In general, the more inputs we have, the longer it takes to perform the corre-
sponding computations. Thus, the fastest is to compute non-linear functions with the
smallest number of inputs—i.e., non-linear functions s(x)with only one input x . So,
to make computations faster, on each computation stage, we either compute a linear
function or a non-linear function of one variable.

To make computations fast, a linear stage cannot be followed by a linear stage.
Indeed, if after computing a linear function, we again compute a linear function of
the first stage’s output, we will still be computing a linear function of the original
inputs—and this can be done in a single stage. Similarly, ifwefirst compute a function
y = s(x)of one variable, and then compute another function z = t (y)of one variable,
then, in effect, we compute a composition z = t (s(x)) of these functions, and this
can also be done in a single stage. Thus, in fast computations, a linear stage must be
followed by a non-linear stage, and a non-linear stage must be followed by a linear
stage.

How many stages do we need? If we use only one stage, then all we can compute
are either linear functions or functions of one variable, and many real-life quantities
depend non-linearly on several variables. So, we need to have at least two layers.
This is exactly how a neural network works: each of its processing units (neurons):

• first computes a linear combination y = w1 · x1 + . . .+ wn · xn + w0 of its inputs
x1, . . . , xn , and

• then applies a non-linear function z = s(y) – known as an activation function—to
the resulting value y.

As a result, each neuron computes the value

z = s(w1 · x1 + . . .+ wn · xn + w0).

From general to specific computational problems. Neural networks are used for
machine learning, when:

• we have no prior information about the dependence between the quantities, and
• we want to determine this dependence based on observation results.

In this case, it makes sense to require that a neural network be able to approximate
any possible dependence. So, the activation functions are selected to make sure that
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the corresponding neural networks are universal approximators—i.e., that they can
approximate any reasonable function with any given accuracy.

For a general neural network, in principle, in addition to activation functions (that
need to be computed every time), we can also use functions that have already been
computed before. Using these functions will not add computation time—since these
functions have already been computed before. However, since a neural network is
intended to compute all possible functions from all possible domains, having a pre-
computed function from, e.g., biology will probably not help in solving the next
problem which may be from geosciences.

In contrast, when we solve a given system of differential equations, we are inter-
ested in very specific functions—solutions to this system of equations. Many of
these solutions—e.g., corresponding to similar initial conditions—are similar, so it
is reasonable to expect that knowing a solution to a similar problem can help in
solving the current problem. Thus, for solving systems of differential equations, it
makes sense to consider, in addition to activation functions (of one variable), also
use pre-computed functions s1(x), . . . , sn(x), possibly of several variables.

What can we compute this way if we use the fastest (two-stage) computations?
Since a linear layer cannot be followed by a linear one and a non-linear stage cannot
be followed by a non-linear one, we have two options:

• we can have a linear stage followed by a non-linear stage; we will denote this
option by L-NL, and

• we can have a non-linear stage followed by a linear stage; we will denote this
option by NL-L.

L-NL option. In this option, first, we compute some linear combinations T (x) of the
inputs, and then apply an appropriate non-linear function si , resulting in si (T (x)).

The problem is that in this option, we have n different families of functions corre-
sponding to using n different pre-computed functions si (x). There is no continuous
transition between these families. In this sense, we have a union of n disconnected
families of functions. However, what we want to approximate is the family of all
solutions, which continuously depend on initial conditions and parameters of the
system. In other words, in this option, there is a discrepancy between:

• the class of functions that we want to approximate—namely, the class of all solu-
tions corresponding to different initial conditions and different values of the param-
eters, and

• the class of functions that we use for approximation—in this option, the class of
functions si (T (x)) corresponding to i = 1, . . . , n.

This leaves us with the need to consider the second option.

NL-L option. In this case, first, we apply non-linear functions, i.e., compute the
values y1 = s1(x), . . . , yn = sn(x), and then we compute a linear combination of
these values, i.e., an expression

c1 · y1 + . . .+ cn · yn + c0 = c1 · s1(x)+ . . .+ cn · sn(x)+ c0.
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In this option, different solutions correspond to different values of ci , so they can be
easily smoothly transformed into one another.

Modulo a constant term c0, what we get in this option is exactly the approxima-
tion used in Model Order Reduction (MOR). Thus, we have indeed explained the
empirical success of the MOR techniques: they naturally appear if we are looking
for the fastest-to-compute approximations.
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Bounding the Range of a Sum
of Multivariate Rational Functions

Mohammad Adm, Jürgen Garloff, Jihad Titi, and Ali Elgayar

Abstract Bounding the range of a sum of rational functions is an important task if,
e.g., the global polynomial sum of ratios problem is solved by a branch and bound
algorithm. In this paper, boundingmethods are discussedwhich rely on the expansion
of a multivariate polynomial into Bernstein polynomials.

Keywords Multivariate rational function · Range enclosure · Bernstein
polynomial

1 Introduction

In this paper, we consider the expansion of a multivariate polynomial into Bernstein
polynomials over a box, i.e., an axis-aligned region, inRn . This expansion has many
applications, e.g., in computer aided geometric design, robust control, global opti-
mization, differerential and integral equations, and finite element analysis [8, 13]. A
very useful property of this expansion is that the interval spanned by theminimumand
maximum of the coefficients of this expansion, the so-called Bernstein coefficients,
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provides bounds for the range of the given polynomial over the considered box, see,
e.g., [11]. A simple (but by no means economic) method for the computation of the
Bernstein coefficients from the coefficients of the given polynomial is the use of
formula (2) below. This formula (and also similar ones for the Bernstein coefficients
over more general sets like simplices and polytopes) allows the symbolic compu-
tation of these quantities when the coefficients of the given polynomial depend on
parameters. Some applications are making use of this symbolic computation: In [6,
Sections 3.2 and 3.3] and the many references therein, the reachability computation
and parameter synthesis with applications in biological modelling are considered.
In [4, 5], parametric polynomial inequalities over parametric boxes and polytopes
are treated. Applications in static program analysis and optimization include depen-
dence testing between references with linearized subscripts, dead code elimination of
conditional statements, and estimation of memory requirements in the development
of embedded systems. Applications which involve polynomials of higher degree or
many variables require a computation of the Bernstein coefficients which is more
economic than by formula (2). In [21], the second and third authors have presented a
matrix method for the computation of the Bernstein coefficients which is faster than
the methods developed so far and which is included in version 12 of the MATLAB
toolbox INTLAB [17].

In this paper, we aim at finding bounds for the range of a sum of rational functions
over a box. This problem appears when the global polynomial sum of ratios problem
is solved by a branch and bound method, see, e.g., [7, 10]. The sum of ratios problem
is one of the most difficult fractional programming problems encountered so far1.
After having introduced the Bernstein expansion in Sect. 2, we will extend in
Sect. 3 the bounds for the range of a single rational function to a sum of ratio-
nal functions. In the sequel we employ the following notation. Let n ∈ N (set of the
nonnegative integers) be the number of variables. A multi-index (i1, . . . , in) ∈ N

n

is abbreviated by i . In particular, we write 0 for (0, . . . , 0). Arithmetic opera-
tions with multi-indices are defined entry-wise; the same applies to comparison
between multi-indices. For x = (x1, . . . , xn) ∈ R

n , its monomials are defined as

xi :=
n∏

s=1
xiss . For d = (d1, . . . , dn) ∈ N

n such that i ≤ d, we use the compact nota-

tions
d∑

i=0
:=

d1∑

i1=0
· · ·

dn∑

in=0
and

(d
i

) :=
n∏

s=1

(ds
is

)
.

1 The problem of optimizing one or several ratios of functions is called a fractional program. The
ninth bibliography of fractional programming [18] covering mainly the period 2016–2018 lists 520
papers on fractional programming and its applications.
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2 Bernstein Expansion

In this section, we present fundamental properties of the Bernstein expansion over a
box, e.g., [8, Subsection 5.1], [11, 16], that are employed throughout the paper. For
simplicity we consider the unit box u := [0, 1]n , since any compact nonempty box
x of Rn can be mapped affinely onto u. Let � ∈ N

n , a j ∈ R, with j = 0, . . . , �, such
that for s = 1, . . . , n,

�s := max
{
q | a j1,..., js−1,q, js+1,..., jn �= 0

}
.

Let p be an �-th degree n-variate polynomial with the power representation

p(x) =
�∑

j=0

a j x
j . (1)

We expand p into Bernstein polynomials of degree d, d ≥ �, over u as

p(x) =
d∑

j=0

b(d)
j (p)B(d)

j (x),

where B(d)
j is the j-th Bernstein polynomial of degree d, defined as

B(d)
j (x) :=

(
d

j

)

x j (1 − x)d− j ,

and b(d)
j (p) is the j-th Bernstein coefficient of p of degree d over u which is given

by

b(d)
j (p) =

j∑

i=0

( j
i

)

(d
i

)ai , 0 ≤ j ≤ d, (2)

with the convention that ai := 0 if i ≥ �, i �= �.
Note that by (2) the Bernstein coefficients are linear: Let p1 and p2 be polynomials

with the power representations (1) with � = �(1) and � = �(2), respectively, and let
� := max

{
�(1), �(2)

}
. If p = αp1 + βp2, α, β ∈ R, then

b(d)
j (p) = αb(d)

j (p1) + βb(d)
j (p2), i = 0, . . . , d. (3)
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3 Bounds for the Range of a Sum of Rational Functions

Let p and q be two n-variate real polynomials with the Bernstein coefficients over
the unit box u given by b(d)

i (p) and b(d)
i (q), 0 ≤ i ≤ d, respectively. We assume

that the two polynomials have the same degree l since otherwise we can elevate
the degree of the Bernstein expansion of either polynomial by component where
necessary to ensure that their Bernstein coefficents are of the same order d ≥ l. We
consider the multivariate rational function f := p

q over u. In the sequel we assume

that all b(d)
i (q), i = 0, . . . d, have the same strict sign (and without loss of generality

we may assume that all of them are positive). We use the notation for the rational
Bernstein coefficients of f

b(d)
i ( f ) := b(d)

i (p)

b(d)
i (q)

, i = 0, . . . , d. (4)

Then an enclosure for the range of f over u is given by the following theorem which
includes also the polynomial case (q = 1).

Theorem 1 [15, Theorem 3.1], [12, Proposition 3] The range of f over u can be
bounded by

min
i=0,...,d

b(d)
i ( f ) ≤ f (x) ≤ max

i=0,...,d
b(d)
i ( f ), x ∈ u. (5)

(Vertex Condition) Equality holds in the left or right inequality if and only if the
minimum or the maximum of the Bernstein coefficents is attained at a vertex index i
with is ∈ {0, ds} , s = 1, . . . , n.

Now we extend the bounds for the range over a box of a single rational function
to a sum of such functions. Without loss of generality, we consider here only the case
that we have solely two rational functions,

f = f1 + f2, where f1 = p1
q1

, f2 = p2
q2

. (6)

We assume that both the numerator and denominator polynomials have the com-
mon degree � and that all the Bernstein coefficients of each denominator polynomial
have the same strict sign (but may be different for q1 and q2). By the additivity of
the Bernstein coefficients (3) and the enclosure (5), one may conjecture that

min
i=0,...,d

(b(d)
i ( f1) + b(d)

i ( f2)) ≤ f (x) ≤ max
i=0,...,d

(b(d)
i ( f1) + b(d)

i ( f2)), x ∈ u. (7)

However, this conjecture is not true even in the case of ratios of linear functions as
the following example shows.
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Example 1 Let f1(x) = 2x+1
x+1 and f2(x) = 0.2x+1

5x+1 . Then f = f1 + f2 attains its
global minimum ≈1.645445 on [0, 1] at ≈0.4239. The rational Bernstein
coefficients of f1 and f2 are b(1)

0 ( f1) = 1, b(1)
1 ( f1) = 1.5, b(1)

0 ( f2) = 1,
b(1)
1 ( f2) = 0.2, such that the lower bound in (7) is 1.7 which is greater than the
global minimum of f .

We will return to (7) in Example 3.

3.1 The Naïve Bounds

To motivate the enclosure (11) below, we consider first the univariate case (n = 1).
We start with recalling a formula for the Bernstein coefficients of the product pr
of two polynomials p and r of degrees �(p) and �(r) in terms of their Bernstein
coefficients, see [9, formula (44)]. In the sequel, we suppress in the presentation of
the Bernstein coefficients the reference to their degrees. Since for the degree � of the
polynomial pr , � = �(p) + �(r) holds, we obtain for k = 0, 1, . . . , �

bk(pr) =
min{�(p),k}∑

μ=max{0,k−�(r)}

(
�(p)
μ

)(
�(r)
k−μ

)

(
�

k

) bμ(p)bk−μ(r)

≤ max
μ

bμ(p)bk−μ(r)
1
(
�

k

)

min{�(p),k}∑

μ=max{0,k−�(r)}

(
�(p)

μ

)(
�(r)

k − μ

)

. (8)

By the Vandermonde convolution, the last sum in (8) equals
(
�

k

)
such that we can

conclude
bk(pr) ≤ max

μ
bμ(p)bk−μ(r).

An analogous lower bound is provided by replacing the maximum by the minimum.
Returning to the two-term case in (6), we assume for simplicity that both the

numerator and denominator polynomials have the common degree � and that the
Bernstein coefficients of q1 and q2 have the same strict sign. Put

M := max
i, j=0,...,�

(bi ( f1) + b j ( f2))

and

s := p1q2 + q1 p2 − Mq1q2. (9)

Then by (3), we obtain for k = 0, 1, . . . , 2�

bk(s) = bk(p1q2) + bk(q1 p2) − Mbk(q1q2),

and by (8) with coefficents αμ satisfying
∑

μ αμ = 1
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bk(s) =
min{�,k}∑

μ=max{0,k−�}
αμ(bμ(p1)bk−μ(q2) + bμ(q1)bk−μ(p2) − Mbμ(q1)bk−μ(q2))

=
min{�,k}∑

μ=max{0,k−�}
αμbμ(q1)bk−μ(q2)(

bμ(p1)

bμ(q1)
+ bk−μ(p2)

bk−μ(q2)
− M) (10)

≤ 0,

by the definition of M . Since by Theorem 1 s(x) ≤ maxk=0,...,2� bk(s), x ∈ u, we
conclude that s(x) ≤ 0 and therefore,

f1(x) + f2(x) ≤ M, x ∈ u.

Similarly we obtain a lower bound for f1 + f2 on u if we replace the maximum by
the minimum. The resulting enclosure for the range of f = f1 + f2 on u

min
i, j=0,...,d

(b(d)
i ( f1) + b(d)

j ( f2)) ≤ f (x) ≤ max
i, j=0,...,d

(b(d)
i ( f1) + b(d)

j ( f2)), x ∈ u, (11)

is simply the enclosure which we obtain if we form the (Minkowski) sum of the
enclosure (5) for f1 and f2. Therefore, this enclosure is obviously true also in the
n-variate case which we will consider now again.

We put f := maxx∈u f (x) and for d ≥ �,

m(d) := min
i, j=0,...,�

(b(d)
i ( f1) + b(d)

j ( f2)),

m(d) := max
i, j=0,...,�

(b(d)
i ( f1) + b(d)

j ( f2)).

In the sequel, we present our results mainly only for the upper bounds. Analogous
results hold for the lower bounds.

Theorem 2 The following vertex condition holds

f = m(d) if and only if m(d) = b(d)
i∗ ( f1) + b(d)

i∗ ( f2) for a vertex index i∗.

Proof Assume that m(d) is attained at a vertex index i∗. Then the statement is clear
because the sum of the related Bernstein coefficients is a function value of f , see [15,
Remark 1]. Conversely, assume that f = m(d), and let f = f (x̂) for some x̂ ∈ u.
Define the polynomial s as in (9) with M = m(d). Then we can conclude that

s(x̂)

q1(x̂)q2(x̂)
= f (x̂) − m(d) = 0,

hence s(x̂) = 0. Since s is nonpositive on u, it attains its maximum at x̂ .
On the other hand, in the multivariate case a straightforward extension of formula
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(8) for the product of two polynomials in the Bernstein representation exists, see [2,
Section 3.3], by which we can conclude as in (10) that bi (s) ≤ 0, for i = 0, . . . , 2d.
Since s(x) ≤ maxi=0,...,2d bi (s), it follows that there exists an index i∗ with bi∗(s) =
0, whence

max
x∈u s(x) = bi∗(s).

By the polynomial vertex condition in Theorem 1, we can conclude that the index i∗
is a vertex index.

In [12], some properties of the bounds in the case of a single rational function
are presented. From Proposition 4 and Theorem 8 therein it immediately follows
that also in the multi-term case the bounds are monotone, i.e., for l ≤ d ≤ k it holds
that m(d) ≤ m(k) and m(k) ≤ m(d), and that the so-called inclusion isotonicity of the
interval function provided by the enclosure [m(d)( f, x),m(d)( f, x)] is valid.However,
compared to the single-term case, we are losing one order of convergence of the
bounds to the range. So, degree elevation may not result in linear convergence. This
is shown by the following example.

Example 2 We choose n = 1, f1(x) = x
2−x , f2(x) = 2−2x

2−x . Then f (x) = 1, x ∈ u.
The two Bernstein coefficients for d = 1 of f1 as well as of f2 are 0 and 1. So
m(1) = 2 which cannot be improved by degree elevation because both coefficients
are function values.

To enforce convergence of the bounds to the range we apply subdivision. The
convergence result (Theorem 4) will immediately follow from the linear convergence
of the bounds with respect to the width of the box.

Theorem 3 Let x = [x, x] be any subbox of u. Then

max
i, j=0,...,d

(b(d)
i ( f1, x) + b(d)

j ( f2, x)) − max
x∈x f (x) ≤ δ||x − x ||∞,

where δ is a constant not depending on x.

Proof Letmaxx∈x f (x) = f (x ′), with x ′ ∈ x, and define f m := maxx∈x fm(x),m =
1, 2. Then f (x ′) can be written as

f (x ′) = f 1 + f 2 + f1(x
′) − f 1 + f2(x

′) − f 2.

We apply the results on quadratic convergence in the single-term case [12, Theorem
6] and a standard argument involving the Mean Value Theorem, e.g., [14, Theorem
4.1.18] to f1 and f2 to obtain

max
i=0,...,d

b(d)
i ( f1, x) + max

j=0,...,d
b(d)
j ( f2, x) − f (x ′) ≤ δ1||x − x ||2∞ + δ2||x − x ||∞,

where δ1 and δ2 are constants not depending on x. Since ||x − x ||∞ ≤ 1 the proof is
complete.
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To simplify the presentation, we will reserve in the sequel the upper index of the
Bernstein coefficients for the subdivision level. Repeated bisection of u(0,1) := u in
all n coordinate directions results at subdivision level 1 ≤ h in subboxes u(h,ν) of
edge length 2−h , ν = 1, . . . , 2nh . Denote the Bernstein coefficients of f over u(h,ν)

by b(h,ν)
i ( f ). For their computation see [21].

Theorem 4 (Linear convergence with respect to subdivision) For 1 ≤ h it holds

max
i, j=0,...,l; ν=1,...,2nh

(b(h,ν)
i ( f1) + b(h,ν)

j ( f2)) − f ≤ δ2−h,

where δ is a constant not depending on h.

With increasing subdivision level, the chances are becoming better and better that
the vertex condition holds on subboxes.

In the subdivision process, it may be advantageous to check the vertex condition of
Theorem1 term-wise because then we will be able to detect terms for which we have
already found the true minimum or maximum of the respective rational functions
such that a further division of the boxes under consideration is not necessary for these
terms. If the vertex condition is satisfied for the lower or the upper bounds for all
terms and the individual vertex indices coincide for at least one index, then the vertex
condition in Theorem 2 is fulfilled, and we already have found the true minimum or
maximum of the sum of ratios.

The convergence can possibly be speeded up by employing term-wise the mono-
tonicity and dominance tests presented in [19, Section 6.1].

Example 3 In [1, Example 3], see also [10, (5.14)], the function f

f := −x21 + 16x1 − x22 + 16x2 − x23 + 16x3 − x24 + 16x4 − 214

2x1 − x2 − x3 + x4 + 2

+ −x21 + 16x1 − 2x22 + 20x2 − 3x23 + 60x3 − 4x24 + 56x4 − 586

−x1 + x2 + x3 − x4 + 10

+ −x21 + 20x1 − x22 + 20x2 − x23 + 20x3 − x24 + 20x4 − 324

x21 − 4x4
,

where

x1 ∈ [6, 10], x2 ∈ [4, 6], x3 ∈ [8, 12], x4 ∈ [6, 8],

is to maximize. We have chosen the precision ε = 10−5 and have used an HP OMEN
laptop with Intel®CoreTM i7-10750H with CPU 2.20-5.0 GHz and 16 GB RAM.
The method presented in Section 3 results in 0.043 ms at subdivision level h = 7 in
the upper bound 16.16667 for f attained at (6, 6, 10.05502, 8). The upper bound is
very close to the bounds presented in [1] (computed with precision 10−2) and [10]
(computedwith precision 10−4, according to a private communication). Interestingly,
the conjectured bound (7) provides nearly the same bound attained at the same place
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but for h = 94. The much higher subdivision level is not surprising because we
cannot employ a vertex condition which is very useful to speed up the subdivision
process.

We noticed a similar situation for theminimum.Our algorithmfinds in 0.015ms in
only one subdivision step (h = 1) the lower bound 0.976190 attained at (6, 4, 12, 6)
for the minimum of f . Since this bound is attained at a vertex index, the vertex
condition in Theorem 2 holds, andwe know that we already have found theminimum
of f . The same lower bound is provided by (7) at the same place but for h = 72which
confirms our experience that (7) is true in many cases.

3.2 Improved Bounds

In the single-term case, the bounds converge quadratically if subdivision is applied
[12, Theorem 7]. Therefore, it appears advantageous to reduce the multi-term case to
the single-term case by extending all ratios to the same denominator to obtain a single
rational function which is to optimize. In Example 2, this gives the exact range {1} of
f . But such a procedure is not appropriate for a larger number of terms because the
degrees of the resulting numerator and denominator polynomials become potentially
large. However, we may partition the totality of the terms into groups of two or three
terms and apply the procedure to each group. Finally, we form the (Minkowski)
sum of all resulting enclosures. This procedure requires to compute the Bernstein
coefficients of a product of two polynomials given the Bernstein coefficients of
both polynomials. For this task it is beneficial to use one of the methods which are
presented in [22, Section 4].

In passing, we note that most of the results presented in this paper easily extend
to the Bernstein expansion over simplices [15, Remark 6], [19, 20, 23] which allow
more general regions over which a sum of ratios is to optimize.

4 Future Work

To fight the increase of the degrees inherent in the method described in Sect. 3.2, one
can use the least commonmultiple of the denominators. To compute this, one employs
the greatest common divisor of the polynomials. Amethodwhich appears suitable for
this task is themethod for the division of twopolynomials inBernstein formpresented
in [3]. However, the focus herein is on the univariate case. Division algorithms for
the multivariate case and analogues in the multivariate Bernstein setting of Gröbner
bases are also discussed but have to adapted to our problem. An important point here
is that the methods allow all the computations to be performed using only Bernstein
coefficients such that no conversion to the monomial coefficients is required.
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Fourier Transform and Other Quadratic
Problems Under Interval Uncertainty

Oscar Galindo, Christopher Ibarra, Vladik Kreinovich, and Michael Beer

Abstract In general, computing the range of a quadratic function on given intervals
is NP-hard. Recently, a feasible algorithmwas proposed for computing the range of a
specific quadratic function—square of the modulus of a Fourier coefficient. For this
function, the rank of the quadratic form—i.e., the number of nonzero eigenvalues—is
2. In this paper, we show that this algorithm can be extended to all the cases when
the rank of the quadratic form is bounded by a constant.

1 Formulation of the Problem

Need for data processing. Computers are used to estimate the current values of
physical quantities and to predict their future values (e.g., to predict tomorrow’s
temperature). In all these cases, we need to process data.
Need to take uncertainty into account. The inputs x1, . . . , xn for such data pro-
cessing come from measurements (or from expert estimates). Both measurements
and expert estimates are not absolutely accurate. Measurement results x̃i are, in gen-
eral, somewhat different from the actual (unknown) values xi of the corresponding
quantities. These differences x̃i − xi are calledmeasurement errors. Because of these
differences, the result ỹ = f (̃x1, . . . , x̃n) of data processing is also somewhat differ-
ent from the value y = f (x1, . . . , xn) that we would have obtained if we knew the
exact values xi of the inputs.
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Need for interval uncertainty. In many practical situations, the only information
that we have about measurement uncertainty is the upper bound �i on the absolute
value of each measurement error. In such situations, if the measurement result is
x̃i , then all we know about the actual value xi of the corresponding quantity is that
this value is in the interval [̃xi − �i , x̃i + �i ]. Under such interval uncertainty, it is
desirable to know the range of possible value of y. Estimating such a range is known
as interval computation; see, e.g., [2, 4, 5].
Interval uncertainty: what is known and what we do. In general, computing
such a range is NP-hard already for quadratic functions f (x1, . . . , xn); see, e.g., [3].
Recently, a feasible algorithm was proposed for a practically important quadratic
problem: the problem of estimating the absolute value (modulus) of Fourier coeffi-
cients [1].

In this paper, we show that this feasible algorithm can be extended to a reasonable
general class of quadratic problems.

2 Class of Quadratic Expressions for Which the Range
Can Be Feasibly Computed

A general quadratic function has the form

f =
n

∑

i=1

n
∑

j=1

ci, j · xi · x j +
n

∑

i=1

ci · xi + c0.

An important characteristic of the matrix ci, j is its rank—the number of non-zero
eigenvalues. When we compute the square of the modulus of the Fourier coefficient,
the rank of the corresponding matrix is 2. The general case is when the matrix ci, j
has rank k, i.e., that it has k non-zero eigenvalues λ j , j = 1, . . . , k. We will denote
the corresponding unit eigenvectors by (e j,1, . . . , e j,n).

3 Our Result

We prove that for any fixed k, there is a feasible algorithm for estimating the range
of the corresponding quadratic expression. This algorithm takes time O(nk) in the
homogeneous case and O(nk+1) in the general case.

So, as k increases, the time grows fast, and for k ≈ n, we get exponential time. This
makes sense: since the problem isNP-hard, we cannot expect lower-than-exponential
computation time.
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4 Facts from Calculus: Reminder

Computing theminimumof f is equivalent to computing themaximumof− f . Thus,
it is sufficient to be able to compute the maximum.

According to calculus, the maximum with respect to each variable xi ∈ [xi , xi ]
is attained:

• either for xi = xi , then
∂ f

∂xi
≤ 0—otherwise, if we had

∂ f

∂xi
> 0, a small increase

in xi would lead to the larger value of the function;

• or for xi = xi , then
∂ f

∂xi
≥ 0—otherwise, if we had

∂ f

∂xi
< 0, a small decrease in

xi would lead to the larger value of the function;

• or for xi ∈ (xi , xi ), then
∂ f

∂xi
= 0.

5 Let Us Apply These Facts to Our Problem

We start with the quadratic expression

f =
n

∑

i=1

n
∑

j=1

ci, j · xi · x j +
n

∑

i=1

ci · xi + c0.

In terms of eigenvalues and eigenvectors, the quadratic expression takes the form

f =
k

∑

j=1

λ j ·
(

n
∑

i=1

e j,i · xi
)2

+
n

∑

i=1

ci · xi + c0.

Its partial derivative w.r.t. xi is equal to:

∂ f

∂xi
= 2

k
∑

j=1

λ j ·
(

n
∑

�=1

e j,� · x�

)

· e j,i + ci .

This expression can be described in terms of the following (k + 1)-dimensional
vectors:

ei = (e1,i , . . . , ek,i , ci ) and e∗
i = (2λ1 · e1,i , . . . , 2λk · ek,i , 0).
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Namely, in terms of the dot (scalar) product, we get
∂ f

∂xi
= ei · S, where:

S
def=

n
∑

�=1

x� · e∗
� + (0, . . . , 0, 1).

Thus, all the (k + 1)-dimensional points ei for which
∂ f

∂xi
= 0 are located on a k-

dimensional plane {e : e · S = 0}.
Let us first consider the non-degenerate case, when every group of k + 1 vectors

ei is linearly independent. We can have no more than k linearly independent vectors
on the same k-dimensional plane. Thus, we can have no more than k indices i for
which partial derivative is 0.

For points on one side of the plane, we have
∂ f

∂xi
< 0, so—according to the above

caluculus-related facts—themaximum is attained for xi = xi . For points on the other

side of the plane, where
∂ f

∂xi
> 0, maximum is attained for xi = xi .

If there are fewer than k points at which the derivative is 0, we can move the plane
a little bit until it reaches exactly k points. So, we arrive at the following algorithm.

6 Resulting Algorithm: Non-degenerate Case

We are considering the following problem:

• given a quadratic expression with matrix of rank k:

f =
n

∑

i=1

n
∑

j=1

ci, j · xi · x j +
n

∑

i=1

ci · xi + c0

and intervals [xi , xi ],• find: the range [y, y] of the expression f .

To solve this problem, we take all possible selections 1 ≤ i1 < . . . < i j < . . . <

ik ≤ n of k different indices. There are O(nk) such selections. For each selection,
we solve a system of k linear equations with k unknowns S1, . . . , Sk :

k
∑

j ′=1

e j ′,i j · Sj ′ + ci j = 0, j = 1, . . . , k.

We then consider all 3k possible divisions of the set {1, . . . , k} into 3 subsets L
(lower), U (upper), and I (inside). For each division:
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• we set xi = xi if ei · S < 0;
• we set xi = xi if ei · S > 0;
• we set xi j = xi j for j ∈ L and xi j = xi j for j ∈ U ;
• we find the remaining values xi j for j ∈ I , from the system of equations:

∂ f

∂xi j
= 2

k
∑

j ′=1

λ j ′ ·
(

n
∑

�=1

e j ′,� · x�

)

· e j ′,i j + ci j = 0, j = 1, . . . , k.

If the resulting values xi j are in [xi j , xi j ], then we compute the value f (x1, . . . , xn).
The largest of the corresponding values of the expression f is y. Computing f by

using eigenvectors takes timeO(n · k) = O(n).Weperform it for allO(nk) · 2 · 3k =
O(nk) cases, so overall time is O(nk+1), which is feasible.

7 General Case

For each δ > 0, we can add δ-small random changes to the values ci j and ci . For
example, we can add values uniformly distributed on the interval [−δ, δ]. With prob-
ability 1, the resulting system is non-degenerate.

The difference between the original and new objective functions does not exceed

δ ·
⎛

⎝

n
∑

i=1

n
∑

j=1

|xi | · |x j | +
n

∑

i=1

|xi |
⎞

⎠ .

We can use straightforward interval computations (see, e.g., see, e.g., [2, 4, 5]) to
get the bound B on the expression in parentheses. So, for any given ε > 0, if we
take δ = ε/B, we get a non-degenerate objective function which is ε-close to the
original one. The bounds for the new objective function are ε-close to the bounds on
the original one.

Thus, we have a feasible O(nk+1) algorithm for computing y and y with any given
accuracy ε > 0.

8 Homogeneous Case

In the Fourier transform case, ci = 0, so f =
n
∑

i=1

n
∑

j=1
ci, j · xi · x j + c0. In such homo-

geneous case, we can consider k-dimensional vectors

ei = (e1,i , . . . , ek,i ) and e∗
i = (2λ1 · e1,i , . . . , 2λk · ek,i ).
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In non-degenerate case, we thus have ≤ k − 1 indices i at which the derivative is 0.
So, we have a similar algorithm, but with k − 1 instead of k. This algorithm requires
time O(nk).
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B-Matrices and Doubly B-Matrices
in the Interval Setting

Matyáš Lorenc

Abstract In this paper we focus on generalizing B-matrices and doubly B-matrices
into interval setting, including some results regarding these classes. By interval B-
matrix, or doublyB-matrixweunderstand such an intervalmatrix,whose all instances
are B-matrices, or doubly B-matrices respectively.We derivemainlymeans of recog-
nition for their interval variants, such as characterizations, necessary conditions and
sufficient ones.

Keywords B-matrix · Doubly B-matrix · Interval analysis · Interval matrix ·
P-matrix

1 Introduction

P-matrices are defined as thosematrices,whose all principalminors are positive. They
have a close connection to so called linear complementarity problem that is more
thoroughly described in [1],which is one of the reasons they are studied.A connection
has even been found between P-matrices and regularity of interval matrices, as shown
in [4] or [11]. However, the task of verification whether a given matrix belongs to the
class of P-matrices is co-NP-complete, as shown in [2]. This leads us to try to define
some subclasses of P-matrices that are easily recognizable. Such classes are e.g. B-
matrices (introduced in [9]) and doubly B-matrices (introduced in [10]). What more,
the B-matrices and doubly B-matrices found their use in localization of eigenvalues,
as shown in [9, 10].

In thisworkwewill present some results based on [8], such as generalization of our
special subclasses of P-matrices into interval settings and we will lay the foundations
for recognizing the interval variants through characterization, or sufficient conditions
or necessary ones.
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First, let us note that by IR we denote the set of all real intervals and then let us
take a look at what we mean by interval matrix.

Definition 1 (intervalmatrix)An intervalmatrixA, whichwedenote byA ∈ IR
m×n ,

is defined as
A = [A, A] = { A ∈ R

m×n
∣∣ A ≤ A ≤ A

}
,

where A, A are called lower, or upper bound matrices of A respectively, and ≤ is
understood entrywise.

We can as well look at A as matrix, which has entries from IR, hence ∀i ∈
[m],∀ j ∈ [n] : ai j =

[
ai j , ai j

]
, where [n] = {1, 2, . . . , n} and analogously for [m].

An interval matrix A ∈ IR
n×n is called an interval P-matrix if every A ∈ A is a

P-matrix. Similarly we define interval B-matrices and interval doubly B-matrices,
or e.g. even a class of Z-matrices, which are matrices with non-positive off-diagonal
elements. In thismanner we can even define some basic properties, such as regularity,
which is againmore thoroughly studied in the followingworks: [3, 5–7], amongmany
others.

2 B-Matrices

2.1 Real B-Matrices

Let us start by introducing real B-matrices and a few facts about them, which are
introduced by Peña in [9]. Then we proceed to state and prove one new fact.

Definition 2 (B-matrix) Let A ∈ R
n×n . We say that A is a B-matrix, if ∀i ∈ [n] the

following holds:

(a)
n∑

j=1

ai j > 0

(b) ∀k ∈ [n] \ {i} : 1

n

n∑

j=1

ai j > aik

Remark 1 From Definition 2 it can be deduced that every B-matrix A must fulfill
following condition for all i ∈ [n]:

aii > r+
i ,

where r+
i = max{0, ai j | j �= i}.

Proposition 1 B-matrices are P-matrices as well.
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Proposition 2 Let A ∈ R
n×n. It holds that A is a B-matrix if and only if ∀i ∈ [n]

the following holds:
n∑

j=1

ai j > n · r+
i

Proposition 3 Let A ∈ R
n×n. It holds that A is a B-matrix if and only if ∀i ∈ [n]

the following holds:
aii − r+

i >
∑

j �=i

(
r+
i − ai j

)

Proposition 4 Let A ∈ R
n×n. If A is a Z-matrix, then the following is equivalent:

(1) A is a B-matrix,
(2) The row sums are positive.
(3) A is strictly diagonally dominant by rows with positive diagonal entries.

Proposition 5 Let us have two B-matrices A, B ∈ R
n×n and let C ∈ R

n×n. If C
satisfies the following:

∀i ∈ [n] : Ci∗ = Ai∗ ∨ Ci∗ = Bi∗,

then C is a B-matrix.

Proof InDefinition 2wecan see that there are no conditions intertwining the rows. So
by combining some rows, which satisfy the conditions, while ensuring that elements
that were diagonal still are, then we get a B-matrix.

2.2 Interval B-Matrices

Now we will progress to generalize the class of B-matrices into the interval setting.
The intervalB-matrices are defined just as ismentioned above, at the end of Sect. 1,

but that definition gives us little to verify whether a given matrix is an interval B-
matrix, therefore we formulate the following characterization:

Theorem 1 Let A ∈ IR
n×n. It holds that A is an interval B-matrix if and only if

∀i ∈ [n] the following two properties hold:

(a)
n∑

j=1

ai j > 0

(b) ∀k ∈ [n] \ {i} :
∑

j �=k

ai j > (n − 1) · aik
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Proof As shown in Definition 2, square real matrix A is a B-matrix, if for its every
row i holds that the row sums are positive (marked as condition (a)) and every non-
diagonal element of the i th row is bounded above by the corresponding row mean
((b) condition).

The (a) condition is surely satisfied ∀A ∈ A, because of the (a) condition of
Proposition, whereas the (a) condition of Proposition always holds true for an inter-
val B-matrix A because A ∈ A, thus A is a B-matrix and fulfills the condition (a)
of Definition 2.

Now let’s take a look at conditions (b). The (b) condition of the Definition 2 can
be for every k �= i rewritten as follows:

1

n

n∑

j=1

ai j > aik ⇔
∑

j �=k

ai j > (n − 1) · aik

In the last inequality, we can see there is no element twice. Consequently, if we use
intervals in this inequality, by substitution (of specific values from the intervals) we
obtain exact values, not a superset. So now we can see that the condition (b) of real
case applies for every A ∈ A iff it holds for ai j on the left side and aik on the right
side, which is exactly the (b) condition of Proposition.

This characterization has time complexityO(n2), which is the same as the complexity
of the characterization for real case from Definition 2.

Now let us take a look at a few properties of interval B-matrices that are rather
direct corollaries of this characterization.

Corollary 1 Let A ∈ IR
n×n. Then A is an interval B-matix iff A with the diagonal

fixed on lower bounds (aii = aii ) is an interval B-matrix.

Proof In the characterization given in Theorem 1 we see that every time any aii
occures, it occures in form of aii , hence we are not interested in any other
value of aii . (So the reduced matrix has to fulfill exactly the same conditions
as the matrix A.)

Corollary 2 Let A ∈ IR
n×n and let

S =
{
(i, j) | i, j ∈ [n] : ∃k ∈ [n] \ {i, j} : ai j ≤ aik ∧ ai j ≤ aik

}
.

We have that A is an interval B-matix iff A with every element, whose indices are in
S, set to its lower bound (∀(i, j) ∈ S : ai j = ai j ) is an interval B-matrix.

Proof The only time, when for every i and j �= i the ai j occures in Theorem 1, is
the (b) condition. Let us show that in the case that (i, j) ∈ S this condition is not
necessary and is substituted by one of the others.

Let (i, j) ∈ S arbitrary and let k ∈ [n] \ {i} : ai j ≤ aik ∧ ai j ≤ aik .
Because (i, j) ∈ S, then surely such k exists. Then:
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∑

m �= j

aim ≥
∑

m �=k

aim > (n − 1) · aik ≥ (n − 1) · ai j

The first inequality is obtained from ai j ≤ aik and the third from ai j ≤ aik . The sec-
ond one holds, if condition (b) holds for (i, k), so we see that if the condition holds
for (i, k), then it holds for (i, j) as well. Thus the implication “⇐” holds.

The second implication is trivial, because A is a superset of the reduced matrix.

Although the next corollary is obtained rather straightforwardly from the previous
theorem, we will state it, as it will prove to be a useful step in the derivation of other
characterizations of interval B-matrices.

Corollary 3 Let A ∈ IR
n×n. It holds that A is an interval B-matrix if and only if

∀i ∈ [n] the following holds:

∀k ∈ [n] \ {i} :
n∑

j=1

ai j > max{0, (n − 1) · aik + aik}

Proof “⇒”
A is intervalB-matrix, soA satisfies both conditions fromTheorem1.Thus for arbi-

trary k �= i :

∑

j �=k

ai j > (n − 1) · aik ⇔
n∑

j=1

ai j > (n − 1) · aik + aik

And combinedwith condition (a) fromTheorem1we get that this implication clearly
holds.

“⇐”
We will show that if matrix fulfills condition stated in this corollary, then it fulfills

the conditions of Theorem 1 as well. The condition (a) holds trivially. As for the (b)
condition:

∀k �= i :
n∑

j=1

ai j > max{0, (n − 1) · aik + aik} ≥ (n − 1) · aik + aik ⇒

⇒
∑

j �=k

ai j > (n − 1) · aik

So the (b) condition holds too. Thus this implication also holds.

By realignment of the previous corollary, we get the subsequent one.
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Corollary 4 Let A ∈ IR
n×n. It holds that A is an interval B-matrix if and only if

∀i ∈ [n] the following holds:

(a)
n∑

j=1

ai j > 0

(b) ∀k ∈ [n] \ {i} : aii − aik >
∑

j �=i

(
aik − ai j

)

Proof Obtained by realignment of inequalities from Corollary 3.

Or we might realign it in a different way and obtain our future connection to inter-
val doubly B-matrices. (Even though there is quite a clear bond throught the real
cases, which translates pretty straightforwardly into interval setting, we believe that
this corollary illustrates this connection even more.)

Corollary 5 Let A ∈ IR
n×n. It holds that A is an interval B-matrix if and only if

∀i ∈ [n] the following holds:

(a)
n∑

j=1

ai j > 0

(b) ∀k ∈ [n] \ {i} : aii − aik >
∑

j �=i
j �=k

(
aik − ai j

)

Next we should mention two simple corollaries of the definition of interval B-
matrices:

Corollary 6 Every interval B-matrix is an interval P-matrix.

Proof It holds for every instance, hence it holds for whole interval matrix.

Corollary 7 Let us have two interval B-matrices A,B ∈ R
n×n and let C ∈ R

n×n. If
C satisfies the following:

∀i ∈ [n] : Ci∗ = Ai∗ ∨ Ci∗ = Bi∗,

then C is an interval B-matrix.

Proof From our definition and from Proposition 5 we can see that it holds for every
instance, thus it holds for whole interval matrix.

Now let us generalize Remark 1.

Remark 2 Because for every interval B-matrix A holds that ∀A ∈ A: A is a B-
matrix, thus even matrix A′, defined as
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a′
i j =

{
aii if i = j,
ai j otherwise.

,

is a B-matrix, thus it must hold (from Remark 1) that

∀i ∈ [n] : aii > max{0, ai j | j �= i}.

Let us finish this section about B-matrices by stating a sufficient condition for
interval Z-matrices and a properties the entries of interval B-matrices must fulfill.

Proposition 6 LetA ∈ IR
n×n be an interval Z-matrix. Then the following are equiv-

alent:

(1) A is an interval B-matrix,

(2) ∀i ∈ [n] :
n∑

j=1
ai j > 0,

(3) ∀i ∈ [n] : aii >
∑

j �=i
|ai j |.

(4) A is a B-matrix.

Proof “(1) ⇒ 2)”: From Theorem 1
“(2) ⇔ (3) ⇔ (4)”: From Proposition 4.
“(3) ⇒ (1)”: ∀A ∈ A : ∀i ∈ [n]:

aii ≥ aii ∧ ∀ j ∈ [n] \ {i} : |ai j | ≤ |ai j |

⇒
aii ≥ aii >

∑

j �=i

|ai j | ≥
∑

j �=i

|ai j | ≥ 0

So A is strictly diagonally dominant with positive diagonal. Thus, according
to Proposition 4, A is a B-matrix.

Proposition 7 Let A ∈ IR
n×n be an interval B-matrix. Then ∀i ∈ [n] the following

two properties hold:

(1) aii >
∑

j∈S |ai j |, where S = { j ∈ [n] | ai j < 0} and
(2) ∀ j ∈ [n] \ {i} : aii > max{|ai j |, |ai j |}.
Proof (1) Let us distinguish the following two cases for arbitrary i ∈ [n]:

I. ∀ j ∈ [n] \ {i} : ai j ≤ 0
Then it follows directly from Theorem 1, condition (a). (Because it holds
that ∀ j ∈ [n] \ {i} : −ai j = |ai j |.)

II. ∃ j ∈ [n] \ {i} : ai j > 0
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Let us take k ∈ argmax
{
ai j | j �= i

}
. Then, according to Corollary 4, the

following applies:

aii − aik >
∑

j �=i

(
aik − ai j

)
.

And because

aii > aii − aik ∧ ∀ j �= i : aik − ai j ≥ 0

(because of the presumption of this case and definition of k), then

aii > aii − aik >
∑

j �=i

(
aik − ai j

)
≥
∑

j∈S

(
aik − ai j

)
>
∑

j∈S
−ai j =

∑

j∈S
|ai j |.

(2) For arbitrary j �= i , let us distinguish three cases:

I. |ai j | > |ai j |
⇒ ai j ≤ 0, thus from property 1. of this proposition:

aii >
∑

k∈S
|aik | ≥ |ai j |,

because j ∈ S.
II. |ai j | > |ai j |⇒ ai j > 0, thus from Remark 2 ⇒ aii > ai j = |ai j |.
III. |ai j | = |ai j |

Then we have either a degenerated interval (ai j = ai j ), or it holds that ai j =
−ai j . For both it holds that ai j ≤ 0 ∨ ai j > 0. Therefore we can use the
same argumentation as in the first two cases with sharp inequalities.

Hence both properties holds.

3 Doubly B-Matrices

3.1 Real Doubly B-Matrices

Let us start by introducing real doubly B-matrices and a few facts about them, some
are showed and proved by Peña in [10], most of them will be proved here.

Definition 3 (Doubly B-matrix) Let A ∈ R
n×n . We say that A is a doubly B-matrix,

if ∀i ∈ [n] the following holds:
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(a) aii > r+
i

(b) ∀ j �= i : (aii − r+
i

) (
a j j − r+

j

)
>

⎛

⎝
∑

k �=i

(
r+
i − aik

)
⎞

⎠

⎛

⎝
∑

k �= j

(
r+
i − a jk

)
⎞

⎠ .

Proposition 8 Let A ∈ R
n×n. If A is a B-matrix, then A is a doubly B-matrix.

Proof If A is a B-matrix, then, from Proposition 3, the following holds for every
i ∈ [n]:

aii − r+
i >

∑

j �=i

(
r+
i − ai j

) ≥ 0

From that follows that ∀i, j ∈ [n], j �= i :

(
aii − r+

i

) (
a j j − r+

i

)
>

⎛

⎝
∑

k �=i

(
r+
i − aik

)
⎞

⎠

⎛

⎝
∑

k �= j

(
r+
j − a jk

)
⎞

⎠ ,

which is exactly the (b) part of the Definition 3. The (a) part of the definition is
obtained from Remark 1. Therefore A is a doubly B-matrix.

Remark 3 We can now show that in general the opposite implication does not hold.
We can take e.g. matrix

A =
(
1 −2
0 1

)

as a counterexample. The matrix A is a doubly B-matrix, but it is not a B-matrix.

Proposition 9 Doubly B-matrices are P-matrices as well.

Proposition 10 Let A ∈ R
n×n. If A is a doubly B-matrix, then exactly one of the fol-

lowing applies:

(a) Either A is a B-matrix, or
(b) there exists a unique j ∈ [n] that

a j j − r+
i ≤

∑

m �= j

(
r+
i − a jm

)

and for every other i ∈ [n] \ { j}:

aii − r+
i >

∑

m �=i

(
r+
i − aim

)
.

(I.e. there is only one row that does not satisfy the condition stated inCorollary 3.)
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Proof Let (a) hold, so A is a B-matrix and thus from Corollary 3 ∀i ∈ [n]:

aii − r+
i >

∑

m �=i

(
r+
i − aim

)
,

thus (b) does not hold.
Now let (a)not apply, so A is not aB-matrix. Then it contains a row,which does not

fulfills the condition stated in Corollary 3. (Otherwise it would fulfill the characteri-
zation stated ibidem, thus it would be a B-matrix, hence we obtain a contradiction.)
We will show that there cannot exist two such rows.

For contradiction, let there be two such rows j and j ′ that

a j j − r+
i ≤

∑

m �= j

(
r+
i − a jm

)

and
a j ′ j ′ − r+

j ′ ≤
∑

m �= j ′

(
r+
j ′ − a j ′m

)
.

(It should be noted that because A is a doubly B-matrix, then from Definition 3 we
get that 0 < a j j − r+

i and 0 < a j ′ j ′ − r+
j ′ .) Then

(
a j j − r+

i

) (
a j ′ j ′ − r+

j ′

)
≤
⎛

⎝
∑

m �= j

(
r+
i − a jm

)
⎞

⎠

⎛

⎝
∑

m �= j ′

(
r+
j ′ − a j ′m

)
⎞

⎠ ,

but that leads us to a contradiction with the Definition 3, because A should have been
a doublyB-matrix. Therefore such a rowwhich breaks the condition fromCorollary 3
is exactly one, all the others have to satisfy this condition.

The next proposition shows us easily testable class of both B- and doubly B-
matrices.

Proposition 11 Let A ∈ R
n×n. If A is a circulant matrix, then the following are

equivalent:

(1) A is a B-matrix.
(2) A is a doubly B-matrix.
(3) a11 − r+

1 >
∑

j �=1

(
r+
1 − a1 j

)

Proof “(1) ⇒ (2)”: See Proposition 8.
“(2) ⇒ (3)”: A is a doubly B-matrix, hence for arbitrary j �= 1:
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(
a11 − r+

1

) (
a j j − r+

j

)
>

⎛

⎝
∑

k �=1

(
r+
1 − a1k

)
⎞

⎠

⎛

⎝
∑

k �= j

(
r+
j − a jk

)
⎞

⎠ ⇔

⇔ (
a11 − r+

1

)2
>

⎛

⎝
∑

k �=1

(
r+
1 − a1k

)
⎞

⎠

2

⇔

⇔ (
a11 − r+

1

)
>

⎛

⎝
∑

k �=1

(
r+
1 − a1k

)
⎞

⎠

The first equivalence holds, because the A is circulant, whereas the second one comes
from the fact that both sides of the resulting inequality are non-negative, which is
based on following:

For left side: A is doubly B-matrix ⇒ ∀i ∈ [n] : aii > r+
i (From condition a) of

Definition 3.)
For right side: From definition of r+

i : ∀i ∈ [n] ∀ j �= i : r+
i ≥ ai j .

Therefore the implication holds.
“(3) ⇒ (1)”: Because A is circulant, the following implication holds:

a11 − r+
1 >

∑

k �=1

(
r+
1 − a1k

) ⇒ aii − r+
i >

∑

k �=i

(
r+
i − aik

)

Thus from Proposition 3 A is a B-matrix.

3.2 Interval Doubly B-Matrices

Now we shall proceed to generalize the class of doubly B-matrices into the interval
setting.

The interval doubly B-matrices are defined as mentioned above, at the end
of Sect. 1, but again that definition gives us no tool to check whether a given matrix
belongs to the class of interval doubly B-matrices, hence we introduce the following
characterization. But first, let us state direct corollary of the definition of interval
doubly B-matrices:

Corollary 8 Every interval doubly B-matrix is an interval P-matrix.

Proof It holds for every instance, thus it holds for whole interval matrix.

Theorem 2 Let A ∈ IR
n×n. Then A is an interval doubly B-matrix if and only if the

following two properties hold:

(a) ∀i ∈ [n] : aii > max{0, ai j | j �= i} and
(b) ∀i, j ∈ [n], j �= i,∀k, l ∈ [n], k �= i, l �= j :
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I.
(
aii − aik

) · (a j j − a jl
)
>⎛

⎜
⎝max

⎧
⎪⎨

⎪⎩
0,
∑

m �=i
m �=k

(
aik − aim

)

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠ ·
⎛

⎜
⎝max

⎧
⎪⎨

⎪⎩
0,
∑

m �= j
m �=l

(
a jl − a jm

)

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠

II. aii · (a j j − a jl
)
>

(

max

{

0,− ∑

m �=i
aim

})

·

⎛

⎜
⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩
0,
∑

m �= j
m �=l

(
a jl − a jm

)

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟
⎟
⎠

III. aii · a j j >

(

max

{

0,− ∑

m �=i
aim

})

·
(

max

{

0,− ∑

m �= j
a jm

})

Proof “⇒” ∀A ∈ A: A is (real) doubly B-matrix, hence:
Our“interval”condition (a)holdsbecauseof“real”condition (a) fromDefinition3

for matrix A′ ∈ Awith all diagonal elements set on their lower bounds and all the off-
diagonal elements set on their upper bounds.

As for “interval” condition (b) let us fix arbitrary i, j ∈ [n], j �= i, and arbitrary
k �= i, l �= j. Then:

I. Let A ∈ A, such that

am1m2 =
⎧
⎨

⎩

aik if (m1,m2) = (i, k),
a jl if (m1,m2) = ( j, l),
am1m2

otherwise.

Then for this A:

(
aii − aik

)(
a j j − a jl

) ≥ (
aii − r+

i

) (
a j j − r+

i

)
>

>

⎛

⎝
∑

m �=i

(
r+
i − aim

)
⎞

⎠

⎛

⎝
∑

m �= j

(
r+
i − a jm

)
⎞

⎠ ≥

≥

⎛

⎜⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩
0,
∑

m �=i
m �=k

(
aik − aim

)

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩
0,
∑

m �= j
m �=l

(
a jl − a jm

)

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟
⎠

The first inequality comes trivially from aik ≤ r+
i and analogically for j and l. The

secondone is obtained from the fact that A is a doublyB-matrix (because A ∈ A andA
is an interval doubly B-matrix). The third and last inequality is a direct result of the
following facts: ∀m �= i : aim ≤ r+

i (from the definition of r+
i ), so r+

i − aim ≥ 0,
thus whole

∑
m �=i

(
r+
i − aim

)
is non-negative. Another fact is that what we drop

from the sum, i.e. the “k member”, is a non-negative element of the sum. And finally
r+
i ≥ aik = aik ∧ aim ≥ aik . Again, for j, l it is analogous.
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I I. Let A ∈ A, such that

am1m2 =
{
a jl if (m1,m2) = ( j, l),
am1m2

otherwise.

Then for this A:

aii
(
a j j − a jl

) ≥ (
aii − r+

i

) (
a j j − r+

j

)
>

>

⎛

⎝
∑

m �=i

(
r+
i − aim

)
⎞

⎠

⎛

⎝
∑

m �= j

(
r+
j − a jm

)
⎞

⎠ ≥

≥
⎛

⎝max

⎧
⎨

⎩
0,−

∑

m �=i

aim

⎫
⎬

⎭

⎞

⎠

⎛

⎜⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩
0,
∑

m �= j
m �=l

(
a jl − a jm

)

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟
⎠

The second inequality comes from the same fact as above, i.e. A is a doubly B-matrix.
And the last one holds as well because of similar reasons as above plus because,
in case of “i part” of the expression, we drop n · r+

i , which is some non-negative
quantity.

I I I. Let A = A ∈ A. Then for this A:

aii · a j j ≥ (
aii − r+

i

) (
a j j − r+

i

)
>

>

⎛

⎝
∑

m �=i

(
r+
i − aim

)
⎞

⎠

⎛

⎝
∑

m �= j

(
r+
i − a jm

)
⎞

⎠ ≥

≥
⎛

⎝max

⎧
⎨

⎩
0,−

∑

m �=i

aim

⎫
⎬

⎭

⎞

⎠

⎛

⎝max

⎧
⎨

⎩
0,−

∑

m �= j

a jm

⎫
⎬

⎭

⎞

⎠

Again these inequalities hold from the reasons stated above.
“⇐” Let A ∈ A.
Condition (a) from Definition 3 follows trivially from our “interval” condition

(a).
Let us pick arbitrary i, j ∈ [n], j �= i.Now let us distinguish the following cases:

(1) r+
i , r

k
j > 0: Then ∃k �= i, ∃l �= j : r+

i = aik ∧ rkj = a jl . So the following holds:

(
aii − r+

i

) (
a j j − r+

j

)
≥ (

aii − aik
)(
a j j − a jl

)
>

>

⎛

⎜⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩
0,
∑

m �=i
m �=k

(
aik − aim

)

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩
0,
∑

m �= j
m �=l

(
a jl − a jm

)

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟
⎠ =
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=

⎛

⎜⎜
⎝
∑

m �=i
m �=k

(
aik − aim

)

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝
∑

m �= j
m �=l

(
a jl − a jm

)

⎞

⎟⎟
⎠ ≥

≥

⎛

⎜
⎜
⎝
∑

m �=i
m �=k

(
r+
i − aim

)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝
∑

m �= j
m �=l

(
r+
j − a jm

)
⎞

⎟
⎟
⎠ =

=
⎛

⎝
∑

m �=i

(
r+
i − aim

)
⎞

⎠

⎛

⎝
∑

m �= j

(
r+
j − a jm

)
⎞

⎠

The second inequality holds because A ∈ A (thus because of the assumptions of
the implication, more specifically because of point I. of condition (b)). The next
equality follows from aik ≥ r+

i ≥ aim ≥ aim , for m �= i , because that implies
that the sums are non-negative. (Analogically for j and l.) The same chain of
inequalities can be used to verify the fourth inequality. And the last equality
arises from the fact that r+

i = aik ∧ r+
j = a jl . Thus from Definition 3, A is a

doubly B-matrix.
(2) r+

i = 0 ∧ r+
j > 0: Then ∃l �= j : rkj = a jl . So the following holds:

(
aii − r+

i

) (
a j j − rkj

) =
= aii

(
a j j − rkj

) ≥ aii
(
a j j − a jl

)
>

>

⎛

⎝max

⎧
⎨

⎩
0,−

∑

m �=i

aim

⎫
⎬

⎭

⎞

⎠

⎛

⎜⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩
0,
∑

m �= j
m �=l

(
a jl − a jm

)

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟
⎠ =

=
⎛

⎝−
∑

m �=i

aim

⎞

⎠

⎛

⎜⎜
⎝
∑

m �= j
m �=l

(
a jl − a jm

)

⎞

⎟⎟
⎠ ≥

≥
⎛

⎝
∑

m �=i

(
r+
i − aim

)
⎞

⎠

⎛

⎜
⎜
⎝
∑

m �= j
m �=l

(
rkj − a jm

)

⎞

⎟
⎟
⎠ =

=
⎛

⎝
∑

m �=i

(
r+
i − aim

)
⎞

⎠

⎛

⎝
∑

m �= j

(
rkj − a jm

)
⎞

⎠

The reasoning for the “ j part” of the expressions in the inequalities is the same
as in the previous case, so let us focus on the “i part”: The third inequality holds,
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because A ∈ A, so the point I I. of condition b) applies. The fourth equality
comes from the following: ∀m �= i : aim ≤ aim ≤ r+

i = 0 ⇒ −∑m �=i aim ≥ 0.
Therefore again from Definition 3 A is a doubly B-matrix.

(3) r+
i > 0 ∧ r+

j = 0: By swapping i for j we get the previous case.
(4) r+

i , r
+
j = 0:

(
aii − r+

i

) (
a j j − r+

j

)
≥ aii · a j j >

>

⎛

⎝max

⎧
⎨

⎩
0,−

∑

m �=i

aim

⎫
⎬

⎭

⎞

⎠

⎛

⎝max

⎧
⎨

⎩
0,−

∑

m �= j

a jm

⎫
⎬

⎭

⎞

⎠ =

=
⎛

⎝−
∑

m �=i

aim

⎞

⎠

⎛

⎝−
∑

m �= j

a jm

⎞

⎠ ≥

≥
⎛

⎝
∑

m �=i

(
r+
i − aim

)
⎞

⎠

⎛

⎝
∑

m �= j

(
r+
j − a jm

)
⎞

⎠

Now the logic behind this chain of inequalities is the same as in the previous
cases. Thus once again from Definition 3 A is a doubly B-matrix.

Thus both implications hold.

This characterization has time complexity O(n4), which is two orders of magni-
tude higher then for the real case, given the O(n2) complexity of the characterization
from Definition 3.

Now let us take a look at a few properties of interval doubly B-matrices that are
rather direct corollaries of this characterization.

Corollary 9 Let A ∈ IR
n×n. We have that A is an interval doubly B-matix iff A with

diagonal fixed on lower bounds (aii = aii ) is an interval doubly B-matrix.

Proof In the characterization given in Theorem 2 we see that every time any aii
occures, it occures in a form of aii , hence we are not interested in any other
value of aii . (So the reduced matrix has to fulfill exactly the same conditions
as the matrix A)

Corollary 10 Let A ∈ IR
n×n and let

S = {(i, j)|i, j ∈ [n] : ∃k ∈ [n] \ {i} : ai j ≤ aik
}
.

We have that A is an interval doubly B-matix iff A with every element, whose indices
are in S, set to its lower bound (∀(i, j) ∈ S : ai j = ai j ) is an interval doublyB-matrix.

Proof The only time, when for every i and k �= i the aik occures in Theorem 2,
are some of the inequalities “I.” in the (b) condition. (And symmetrically as ( j, l)
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in “I I.” and “I I I.” in the (b) condition, but that is analogous, so we will prove just
the first case, where it pops up as (i, k).) Let us show that in the case that (i, k) ∈ S
the inequalities “I.” are not necessary to check because they are substituted by some
of the others.

Let (i, k) ∈ S arbitrary and let k ′ = argmax{aim |m ∈ [n] \ {i}}. Because (i, k) ∈
S, then surely aik ≤ aik ′ . (And thus even aik ≤ aik ′ and aik ≤ aik ′ .) Let us take any
arbitrary j, l ∈ [n], l �= j. Then:

(
aii − aik

)(
a j j − a jl

) ≥ (
aii − aik ′

)(
a j j − a jl

)
>

>

⎛

⎜⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩
0,
∑

m �=i
m �=k ′

(
aik ′ − aim

)

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩
0,
∑

m �= j
m �=l

(
a jl − a jm

)

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟
⎠ ≥

≥

⎛

⎜⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩
0,
∑

m �=i
m �=k

(
aik − aim

)

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩
0,
∑

m �= j
m �=l

(
a jl − a jm

)

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟
⎠

So the inequality “I.” for (i, k) holds only if the inequality “I.” for (i, k ′) holds.
(The last inequality in the previous chain of inequalities holds, because aik ≤ aik ′
and aik ′ ≥ aik, so we subtract more and add less.)

The second implication is trivial, because A is a superset of the reduced matrix.

Now let us take look at rather straightforward corollary of our definition of interval
doubly B-matrices and a generalization of Proposition 10.

Proposition 12 Let A ∈ IR
n×n. If A is an interval B-matrix, then it is an interval

doubly B-matrix as well.

Proof It holds for every instance, therefore it holds for whole interval matrix.

Proposition 13 Let A ∈ IR
n×n be an interval doubly B-matrix. Then exactly one of

the following applies:

(a) Either A is an interval B-matrix, or
(b) there exists a unique j ∈ [n] that j-th row breaks the condition stated in Corol-

lary 5 while for all others i ∈ [n] \ {k} this condition holds.
In other words there exists a unique j , for which holds either

n∑

m=1

a jm ≤ 0

or
∃k ∈ [n] \ { j} : a j j − a jk ≤

∑

m �= j
m �=k

(
a jk − a jm

)
,
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and for all the others i ∈ [n] \ { j} hold both

n∑

m=1

aim > 0

and
∀k ∈ [n] \ {i} : aii − aik >

∑

m �=i
m �=k

(
aik − aim

)
,

Proof Let (a) hold, soA is an interval B-matrix and thus from Corollarty 5 ∀i ∈ [n]:
n∑

m=1

aim > 0

and
∀k ∈ [n] \ {i} : aii − aik >

∑

m �=i
m �=k

(
aik − aim

)
,

thus (b) does not hold.
Now let (a) not apply, so A is not an interval B-matrix. Then it contains a row,

which does not fulfills the condition stated in Corollary 5. (Otherwise it would fulfill
the characterization stated ibidem, thus it would be an interval B-matrix → contra-
diction.) We will show that there cannot exist two such rows. For contradiction, let
there be two such rows j and j ′ that breaks the condition. Let us distinguish the
following cases:

(1) Let it hold that
n∑

m=1

a jm ≤ 0

and
n∑

m=1

a j ′m ≤ 0.

Then
a j j ≤ −

∑

m �= j

a jm ∧ a j ′ j ′ ≤ −
∑

m �= j ′
a j ′m
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and because A is an interval doubly B-matrix, then

∀i ∈ [n] : aii > max{0, aim |m �= i} ≥ 0

⎛

⎝⇒ 0 < a j j ≤ −
∑

m �= j

a jm ∧ 0 < a j ′ j ′ ≤ −
∑

m �= j ′
a j ′m

⎞

⎠

(see Theorem 2, part (a)) and so the following is true:

a j j · a j ′ j ′ ≤
⎛

⎝−
∑

m �= j

a jm

⎞

⎠

⎛

⎝−
∑

m �= j ′
a j ′m

⎞

⎠ =

=
⎛

⎝max

⎧
⎨

⎩
0,−

∑

m �= j

a jm

⎫
⎬

⎭

⎞

⎠

⎛

⎝max

⎧
⎨

⎩
0,−

∑

m �= j ′
a j ′m

⎫
⎬

⎭

⎞

⎠

But that is a contradiction with the assumption that A is an interval doubly B-
matrix, because it violates the (b) condition, part I I I. of characterization of
interval doubly B-matrices stated in Theorem 2.

(2) Let it hold that
n∑

m=1

a jm ≤ 0

and
∃k ∈ [n] \ { j ′} : a j ′ j ′ − a j ′k ≤

∑

m �= j ′
m �=k

(
a j ′k − a j ′m

)
.

Then
a j j ≤ −

∑

m �= j

a jm

and because A is an interval doubly B-matrix, then

∀i ∈ [n] : aii > max{0, aim |m �= i}
⎛

⎜
⎜
⎝⇒ 0 < a j j ≤ −

∑

m �= j

a jm ∧ 0 < a j ′ j ′ − aik ≤
∑

m �= j ′
m �=k

(
a j ′k − a j ′m

)
⎞

⎟
⎟
⎠

(see Theorem 2, part (a)) and so the following is true:
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a j j

(
a j ′ j ′ − a j ′k

) ≤
⎛

⎝−
∑

m �= j

a jm

⎞

⎠

⎛

⎜⎜
⎝
∑

m �= j ′
m �=k

(
a j ′k − a j ′m

)

⎞

⎟⎟
⎠ =

=
⎛

⎝max

⎧
⎨

⎩
0,−

∑

m �= j

a jm

⎫
⎬

⎭

⎞

⎠

⎛

⎜⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩
0,
∑

m �= j ′
m �=k

(
a j ′k − a j ′m

)

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟
⎠

But that is a contradiction with the assumption that A is an interval doubly B-
matrix, because it violates the b) condition, part I I. of characterization of interval
doubly B-matrices stated in Theorem 2.

(3) Let it hold that

∃k ∈ [n] \ { j} : a j j − a jk ≤
∑

m �= j
m �=k

(
a jk − a jm

)

and
∃k ′ ∈ [n] \ { j ′} : a j ′ j ′ − a j ′k ′ ≤

∑

m �= j ′
m �=k ′

(
a j ′k ′ − a j ′m

)
.

Then because A is an interval doubly B-matrix, then

∀i ∈ [n] : aii > max{0, aim |m �= i}
(

⇒ 0 < a j j − a jk ≤
∑

m �= j
m �=k

(
a jk − a jm

)
∧ 0 < a j ′ j ′ − aik ≤

∑

m �= j ′
m �=k

(
a j ′k − a j ′m

))

(see Theorem 2, part (a)) and so the following is true:

(
a j j − a jk

)(
a j ′ j ′ − a j ′k ′

) ≤

≤

⎛

⎜⎜
⎝
∑

m �= j
m �=k

(
a jk − a jm

)

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝
∑

m �= j ′
m �=k ′

(
a j ′k ′ − a j ′m

)

⎞

⎟⎟
⎠ =

=

⎛

⎜⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩
0,
∑

m �= j
m �=k

(
a jk − a jm

)

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩
0,
∑

m �= j ′
m �=k ′

(
a j ′k ′ − a j ′m

)

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟
⎠
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But that is a contradiction with the assumption that A is an interval doubly B-
matrix, because it violates the (b) condition, part I. of characterization of interval
doubly B-matrices stated in Theorem 2.

It is time to state a few necessary conditions thatmight help uswith the verification
of doubly B-matrices.

Proposition 14 Let A ∈ IR
n×n,∀i ∈ [n] : ki ∈ argmax{ai j | j �= i} and let us define

i Amax ∈ R
n×n as follows:

i Amax = (am1m2

) ; am1m2 =
{
am1km1

if m1 �= i ∧ m2 = km1 ,

am1m2
otherwise.

It holds thatA is an interval doubly B-matrix only if A and ∀i ∈ [n] : i Amax are doubly
B-matrices.

Proof It holds that A ∈ A ∧ ∀i ∈ [n] : i Amax ∈ A.

Proposition 14 gives us quite nice necessary condition through reduction, but to
compute it, we have to verify n + 1 matrices whether they are doubly B-matrices,
which takes us verifying O(n2) inequalities for each. Hence together the time com-
plexity would be O(n3). So let us state an equivalent condition with better time
complexity, more precisely with O(n2) complexity.

Proposition 15 Let A ∈ IR
n×n. It holds that A is a doubly B-matrix only if the fol-

lowing hold:

(a) ∀i ∈ [n] : aii > max{0, ai j | j �= i} and
(b) ∀i, j ∈ [n], j �= i, k ∈ argmax{aim |m �= i}, l ∈ argmax{a jm |m �= j}:

I. (aik > 0 ∧ a jl > 0) ⇒
(
aii − aik

)(
a j j − a jl

)
>

⎛

⎜
⎝
∑

m �=i
m �=k

(
aik − aim

)

⎞

⎟
⎠

⎛

⎜
⎝
∑

m �= j
m �=l

(
a jl − a jm

)

⎞

⎟
⎠

II. (aik ≤ 0 ∧ a jl > 0) ⇒

aii
(
a j j − a jl

)
>

(

− ∑

m �=i
aim

)
⎛

⎜
⎝
∑

m �= j
m �=l

(
a jl − a jm

)

⎞

⎟
⎠

III. (aik ≤ 0 ∧ a jl ≤ 0) ⇒
aii · a j j >

(

− ∑

m �=i
aim

)(

− ∑

m �= j
a jm

)

Proof We assume that ∀A ∈ A : A is a doubly B-matrix. Therefore our condition
(a) follows from condition (a) from the Definition 3 for A ∈ A:
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A = (am1m2); am1m2 =
{
am1m1 if m1 = m2,

am1m2
otherwise.

To prove condition (b), let us take arbitrary i, j ∈ [n], j �= i and let k ∈
argmax{aim |m �= i}, l ∈ argmax{a jm |m �= j}. Then:

I. Let aik > 0, a jl > 0. Let us take such A ∈ A, that

A = (am1m2); am1m2 =
⎧
⎨

⎩

aik if (m1,m2) = (i, k),
a jl if (m1,m2) = ( j, l),
am1m2

otherwise.

Then r+
i = aik, r

+
i = a jl , so the following holds:

(
aii − aik

)(
a j j − a jl

) = (
aii − r+

i

) (
a j j − r+

j

)
>

>

⎛

⎝
∑

m �=i

(
r+
i − aim

)
⎞

⎠

⎛

⎝
∑

m �= j

(
r+
j − a jm

)
⎞

⎠ =

=

⎛

⎜⎜
⎝
∑

m �=i
m �=k

(
aik − aim

)

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝
∑

m �= j
m �=l

(
a jl − a jm

)

⎞

⎟⎟
⎠

The last equality arises from the fact that aik = r+
i , so r

+
i − aik = 0, and that ∀m �=

i : r+
i ≥ aim . (And of course analogies of that hold for j as well.)
I I. Let aik ≤ 0, a jl > 0. Let us take such A ∈ A, that

A = (am1m2); am1m2 =
{
a jl if (m1,m2) = ( j, l),
am1m2

otherwise.

Then r+
i = 0, r+

j = a jl , so the following holds:

aii
(
a j j − a jl

) = (
aii − r+

i

) (
a j j − r+

j

)
>

>

⎛

⎝
∑

m �=i

(
r+
i − aim

)
⎞

⎠

⎛

⎝
∑

m �= j

(
r+
j − a jm

)
⎞

⎠ =

=
⎛

⎝−
∑

m �=i

aim

⎞

⎠

⎛

⎜⎜
⎝
∑

m �= j
m �=l

(
a jl − a jm

)

⎞

⎟⎟
⎠

I I I. Let aik ≤ 0, a jl ≤ 0. Let us take A = A ∈ A. Then r+
i = 0, r+

i = 0, so the
following holds:
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aii · a j j = (
aii − r+

i

) (
a j j − r+

j

)
>

>

⎛

⎝
∑

m �=i

(
r+
i − aim

)
⎞

⎠

⎛

⎝
∑

m �= j

(
r+
j − a jm

)
⎞

⎠ =

=
⎛

⎝−
∑

m �=i

aim

⎞

⎠

⎛

⎝−
∑

m �= j

a jm

⎞

⎠

Thus if A is an interval doubly B-matrix, then our conditions hold.

Remark 4 The above mentioned semantic equivalence between Propositions 14
and 15 can be seen from the fact that in the proof of the second one we can use the
matrices defined in the first:

In proof of the point I. of the (b) condition: For given i, j, if we had taken i Amax

for some x �= i, x �= j instead of the matrix that we used, it would have worked even
so. (If we restrict our view on the two rows i and j, which we are interested in, the
two matrices are the same.)

The same reasoning applies for the case that in the point I I. of the (b) condition
for given i, j we would have used i Amax .

And as for the last part, the point I I I. of the (b) condition, there we are already
using one of the matrices from Proposition 14 and that is A.

Ergo it can be seen that the conditions of Proposition 15 are together exactly just
the rewritten condition of the real case (from Definition 3) for the matrices from
Proposition 14.

Now let us take a closer look on various sufficient conditions for being an interval
doubly B-matrix.

First, let us demonstrate, for which matrices are the previous necessary conditions
sufficient ones too. Then we shall look at a link between interval B- and doubly B-
matrices, which will be analogous to Proposition 8. And after that we will show
that for interval Z-matrices, it is quite easy to recognize, whether they are or are not
interval doubly B-matrices.

Proposition 16 Let A ∈ IR
n×n, n ≥ 3. If A fulfills the following condition:

∀i ∈ [n] ∃ki ∈ [n] \ {i} ∀ j ∈ [n] \ {i, ki } : ai j ≤ aiki ,

then A is an interval doubly B-matrix if and only if it fulfills the necessary condition
stated in Proposition 14.

Proof “⇒” Trivially from Proposition 14.
“⇐”∀i ∈ [n] be ki from the assumption. Then∀A ∈ A∀i ∈ [n]: (r+

i > 0 ⇒ r+
i ≤

aiki ∧ r+
i = aiki ).

Let A ∈ A arbitrary.
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(a) From assumption it holds that ∀i ∈ [n] : aii ≥ aii > max{0, ai j | j �= i} ≥
max{0, ai j | j �= i}.

(b) Let us take arbitrary i, j ∈ [n], j �= i. Let us distinguish the following cases:

(1) r+
i > 0 ∧ r+

i > 0
Thus from assumption, 0 < aiki , 0 < a jk j , r

+
i = aiki , r

+
i = a jk j and so, because

i Amax for some x �= i, x �= j is a doubly B-matrix from the assumption of this
implication, the following applies.

(
aii − r+

i

) (
a j j − r+

j

)
≥ (

aii − aiki
)(
a j j − a jk j

)
>

>

⎛

⎜⎜
⎝
∑

m �=i
m �=ki

(
aiki − aim

)

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝
∑

m �= j
m �=k j

(
a jk j − a jm

)

⎞

⎟⎟
⎠ ≥

≥

⎛

⎜⎜
⎝
∑

m �=i
m �=ki

(
r+
i − aim

)

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝
∑

m �= j
m �=k j

(
r+
j − a jm

)

⎞

⎟⎟
⎠ =

=
⎛

⎝
∑

m �=i

(
r+
i − aim

)
⎞

⎠

⎛

⎝
∑

m �= j

(
r+
j − a jm

)
⎞

⎠

(2) r+
i = 0 ∧ r+

j > 0
Thus from assumption, aiki ≤ 0, 0 < a jk j , r

+
j = a jk j and so, because i Amax is a

doubly B-matrix from the assumption of this implication, the following applies.

(
aii − r+

i

) (
a j j − r+

j

)
≥ aii

(
a j j − a jk j

)
>

>

⎛

⎝−
∑

m �=i

aim

⎞

⎠

⎛

⎜
⎜
⎝
∑

m �= j
m �=k j

(
a jk j − a jm

)

⎞

⎟
⎟
⎠ ≥

≥
⎛

⎝
∑

m �=i

(
r+
i − aim

)
⎞

⎠

⎛

⎜⎜
⎝
∑

m �= j
m �=k j

(
r+
j − a jm

)

⎞

⎟⎟
⎠ =

=
⎛

⎝
∑

m �=i

(
r+
i − aim

)
⎞

⎠

⎛

⎝
∑

m �= j

(
r+
j − a jm

)
⎞

⎠

(3) r+
i = 0 ∧ r+

j = 0
Thus from assumption, aiki ≤ 0, a jk j

≤ 0 and so, because A is a doublyB-matrix
from the assumption of this implication, the following applies.



280 M. Lorenc

(
aii − r+

i

) (
a j j − r+

j

)
≥ aii · a j j >

>

⎛

⎝−
∑

m �=i

aim

⎞

⎠

⎛

⎝−
∑

m �= j

a jm

⎞

⎠ ≥

≥
⎛

⎝
∑

m �=i

(
r+
i − aim

)
⎞

⎠

⎛

⎝
∑

m �= j

(
r+
j − a jm

)
⎞

⎠

Therefore we have shown that in each case the matrix A is a doubly B-matrix,
thus A is an interval doubly B-matrix.

Proposition 17 LetA ∈ IR
n×n interval Z-matrix. It holds thatA is an interval doubly

B-matrix if and only if A is a doubly B-matrix.

Proof “⇒” Trivially, because A ∈ A.
“⇐” Let A ∈ A. Then
(a) From assumption it holds that ∀i ∈ [n] : aii ≥ aii > max{0, ai j | j �= i} =

0 = max{0, ai j | j �= i} ≥ max{0, ai j | j �= i},because A is a doublyB-matrix and also
a Z-matrix.

(b) Let i, j ∈ [n], j �= i arbitrary.

(
aii − r+

i

) (
a j j − r+

j

)
≥ (

aii − 0
)(
a j j − 0

)
>

>

⎛

⎝
∑

m �=i

(
0 − aim

)
⎞

⎠

⎛

⎝
∑

m �= j

(
0 − a jm

)
⎞

⎠ ≥

≥
⎛

⎝
∑

m �=i

(
r+
i − aim

)
⎞

⎠

⎛

⎝
∑

m �= j

(
r+
i − a jm

)
⎞

⎠

The first inequality uses just the fact that r+
i = 0, r+

i = 0 and that ∀i, j ∈ [n] : ai j ≥
ai j , the second one holds, because A is a doubly B-matrix and because it is a Z-
matrix too. And the last inequality is again completely trivial using the same facts,
as the first one.

Proposition 18 Let A ∈ IR
n×n,∀i ∈ [n] : ki ∈ argmax{ai j | j �= i} and ∀i ∈ [n] :

k ′
i ∈ argmax{ai j | j �= i}. Let us define Ã ∈ IR

n×n as follows:

Ã = (ãm1m2

) ; ãm1m2 =
⎧
⎨

⎩

am1km1
if m2 = km1 ,

am1m1
if m2 = m1,

min{am1m2
, am1km1

} otherwise.

If ∀i ∈ [n] : aik ′
i
≥ 0 and Ã is a doubly B-matrix, then A is an interval doubly B-

matrix.
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Proof Let A ∈ A, i, j ∈ [n], j �= i arbitrary. Then aiki ≥ 0, because aiki ≥ aik ′
i
≥ 0

from the assumption and the definition of ki (analogically for j). And so the a) condi-
tionof theDefinition3 is satisfied trivially (aii > max{0, aiki } = aiki ) and as for theb)
condition, let ∀i ∈ [n] : li ∈ argmax{aim |m �= i}, then, because max{aim |m �= i} ≥
aik ′

i
≥ 0, it holds that aili = r+

i . Hence:
(
aii − r+

i

) (
a j j − r+

i

) ≥ (
aii − aiki

)(
a j j − a jk j

) =

= (
ãi i − r̃+

i

) (
ã j j − r̃+

j

)
>

⎛

⎝
∑

m �=i

(
r̃+
i − ãim

)
⎞

⎠

⎛

⎝
∑

m �= j

(
r̃+
j − ã jm

)
⎞

⎠ =

=

⎛

⎜⎜
⎝
∑

m �=i
m �=ki

(
aiki − min{aim, aiki }

)

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝
∑

m �= j
m �=k j

(
a jk j − min{a jm, a jk j

})
⎞

⎟⎟
⎠ ≥

≥

⎛

⎜⎜
⎝
∑

m �=i
m �=li

(
aili − aim

)

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝
∑

m �= j
m �=l j

(
a jl j − a jm

)

⎞

⎟⎟
⎠ =

=
⎛

⎝
∑

m �=i

(
r+
i − aim

)
⎞

⎠

⎛

⎝
∑

m �= j

(
r+
i − a jm

)
⎞

⎠

(Where r̃+
i is r+

i due to the matrix Ã.)
The third inequality holds, because of the assumption that the Ã is a dou-

bly B-matix. The fifth inequality is quite trivial too, it relies only on the follow-
ing two facts: aiki ≥ aili ≥ 0 and for m = li : aim = min{aim, aiki } ≤ aiki ≤ aiki .
And the last equality holds, because ∀i : aili = r+

i .

Now,whatwe could be interested in, is forwhatmatrices is the sufficient condition
from Proposition 18 characterization as well. So let us take a look at that.

Proposition 19 Let A ∈ IR
n×n such that ∀i ∈ [n] ∃ki ∈ [n] \ {i} : aiki =

max{ai j | j �= i} ∧ aiki = max{0, ai j | j �= i}. Then the sufficient condition stated in
Proposition 18 is a characterization for A.

Proof “ Ã is a doubly B-matrix, then A is an interval doubly B-matrix”: It follows
from Proposition 18.

“A is an interval doublyB-matrix, then Ã is a doublyB-matrix”: Fromconstruction
of Ã and from assumptions of this proposition it follows that Ã ∈ A.

Next wewill show that if the lower and upper boundmatrices of an interval matrix
are circulant, then some nice properties applies.

Proposition 20 Let A ∈ IR
n×n such that A and A are circulant. Then the following

are equivalent:
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(1) A is an interval doubly B-matrix
(2) A is an interval B-matrix
(3) It holds that

(a) a11 > −
∑

j �=1

a1 j

(b) ∀k ∈ [n] \ {1} : a11 − a1k >
∑

j �=1
j �=k

(
a1k − a1 j

)

Proof “(1) ⇒ (2)”A is a doubly B-matrix, thus it satisfies the characterization given
in Theorem 2. Let i ∈ [n] and k �= i arbitrary. Se let us choose

j =
{
i + 1 if i < n,
1 if i = n.

and l =
{
k + 1 if k < n,
1 if k = n.

(Then aii = a j j and aik = a jl , because both A and A are circulant.) Hence, because
A is an interval doubly B-matrix:

aii · a j j >

⎛

⎝max

⎧
⎨

⎩
0,−

∑

m �=i

aim

⎫
⎬

⎭

⎞

⎠

⎛

⎝max

⎧
⎨

⎩
0,−

∑

m �= j

a jm

⎫
⎬

⎭

⎞

⎠ ⇔

⇔ a2i i >

⎛

⎝max

⎧
⎨

⎩
0,−

∑

m �=i

aim

⎫
⎬

⎭

⎞

⎠

2

⇒

⇒ aii = |aii | >
∣∣∣∣∣
∣
max

⎧
⎨

⎩
0,−

∑

m �=i

aim

⎫
⎬

⎭

∣∣∣∣∣
∣
≥ −

∑

m �=i

aim ⇒

⇒
n∑

m=1

aim > 0

Therefore the (a) condition of Corollary 5 is satisfied. Let us take a look at the second
one, the (b) condition:

(
aii − aik

)(
a j j − a jl

)
>

>

⎛

⎜⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩
0,
∑

m �=i
m �=k

(
aik − aim

)

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩
0,
∑

m �= j
m �=l

(
a jl − a jm

)

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟
⎠ ⇔
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⇔ (
aii − aik

)2
>

⎛

⎜⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩
0,
∑

m �=i
m �=k

(
aik − aim

)

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟
⎠

2

⇒

⇒ aii − aik = |aii − aik | >

∣∣∣∣∣
∣∣∣

max

⎧
⎪⎪⎨

⎪⎪⎩
0,
∑

m �=i
m �=k

(
aik − aim

)

⎫
⎪⎪⎬

⎪⎪⎭

∣∣∣∣∣
∣∣∣

=

= max

⎧
⎪⎪⎨

⎪⎪⎩
0,
∑

m �=i
m �=k

(
aik − aim

)

⎫
⎪⎪⎬

⎪⎪⎭
≥
∑

m �=i
m �=k

(
aik − aim

) ⇒

⇒ aii − aik >
∑

m �=i
m �=k

(
aik − aim

)

Hence A fulfills the characterization of an interval B-matrix as stated in Corollary
5, thus it is an interval B-matrix.

“(2) ⇒ (3)” A is an interval B-matrix, so it satisfies the characterization given in
Corollary 5. Hence for i = 1 it follows from condition (a) of the corollary that our
condition a) holds, and the same goes for the (b) conditions.

“(3) ⇒ (2)” From our (a) condition we know that row sum of the first row
of matrix A is positive. And because A is circulant, all the row sums of this matrix
are the same, thus positive. ⇒ ∀i ∈ [n] : ∑n

j=1 ai j > 0

And because both A and A are circulant and from our condition (b), we get

∀i ∈ [n] ∀k �= 1 ∃ki �= i :
a11 − a1k = aii − aiki ∧

∑

j �=1
j �=k

(
a1k − a1 j

) =
∑

j �=i
j �=ki

(
aiki − ai j

)
.

⇒ ∀i ∈ [n] ∀k �= i : aii − aik >
∑

j �=i
j �=k

(
aik − ai j

)

Therefore A is an interval B-matrix, because it fulfills the conditions of charac-
terization shown in Corollary 5.

“(2) ⇒ (1)” Trivial (see Proposition 12).
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Commonsense “And”-Operations

Javier Tellez, Wenbo Xie, and Vladik Kreinovich

Abstract In many practical situations, we need to estimate our degree of belief in
a statement A& B when the only thing we know are the degrees of belief a and b
in combined statements A and B. An algorithm for this estimation is known as an
“and”-operation, or, for historical reasons, a t-norm. Usually, “and”-operations are
selected in such away that if one of the statements A or B is false, our degree of belief
in A& B is 0. However, in practice, this is sometimes not the case: for example, an
ideal faculty candidate must satisfy many properties—be a great teacher, and be a
wonderful researcher, and be a great mentor, etc.—but if one of these requirements is
not satisfied, this candidate may still be hired. In this paper, we show how to describe
the corresponding commonsense “and”-operations.

1 Why “and”-Operations

Inmanypractical applications, a certain effect appears if several conditionsC1,C2, . . .

are satisfied. For each of these conditions Ci , we can elicit, from the experts, the
degree di ∈ [0, 1] to which this condition is satisfied.

However, there are many possible conditions. It is not possible to extract, from
the experts, a degree to which each possible “and”-combination C1 &C2 & . . . is
satisfied. Thus, we need to be able:

• given degrees of confidence a and b in statements A and B,
• to estimate the degree to which the “and”-combination A& B is satisfied.
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This estimate is usually denoted by f&(a, b). The algorithm for computing this
estimate is known as an “and”-operation or, for historical reason, a t-norm.

2 How Usual “and”-Operations are Obtained

In some situations, about each of the combined statements, we are absolutely certain
either that this statement is true, or that this statement is false. Then, the “and”-
operation should return the true value of the corresponding “and”-statement. So we
should have f&(0, 0) = f&(0, 1) = f&(1, 0) = 0 and f&(1, 1) = 1.

We want to extend these values to all possible combinations of a ∈ [0, 1] and
b ∈ [0, 1]. A reasonable idea is to use linear interpolation over each variable (see,
e.g., [3]), i.e., to assume that:

• for every a, the mapping b �→ f&(a, b) is linear, and
• for every b, the mapping a �→ f&(a, b) is linear.

As a result, we conclude that the desired function is bilinear, i.e., that it has the form

f&(a, b) = c0 + ca · a + cb · b + cab · a · b

for some coefficients ci .
Taking into account the above conditions for a, b ∈ {0, 1}, we conclude that

f&(a, b) = a · b. This is indeed one of the most frequently used “and”-operations;
[1, 2, 4–7].

Similarly, linear interpolation enables us to similarly determine that an appropriate
“or”-operation (historically also known as t-conorm) has the form

f∨(a, b) = a + b − a · b.

3 Need to go Beyond the Usual “and”-Operations

In some cases, when we say “and”, we mean exactly the logical “and”: all conditions
must be absolutely satisfied.

However, in many practical problems, “and” is “softer” than that. For example,
if you ask a person who is planning to buy a house what house he/she wants, the
person will say:

• not too far away
• and spacey
• and not very expensive
• and reasonably well thermo-isolated
• and in a nice neighborhood, etc.
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However, this “and” does not mean literal “and”. If this person finds a house that
satisfied most of these conditions, he/she will gladly buy it.

How can we describe such commonsense “and”-operations?

4 Our Solution

In this paper, we consider the case when we only have two conditions. For a com-
monsense “and”-operation F&(a, b), it is reasonable to still have F&(0, 0) = 0 and
F&(1, 1) = 1. However:

• if only one of the conditions A and B is satisfied,
• then the statement A& B should also be to some extent true.

In other words, we should have F&(0, 1) = F&(1, 0) = α for some small α > 0.
In this case, we get F&(a, b) = α · (a + b) + (1 − 2α) · a · b. Equivalently,
F&(a, b) = (1 − α) · a · b + α · (a + b − a · b) = (1 − α) · f&(a, b) + α · f∨(a, b).

In other words, this operation is a convex combination of the usual “and”- and
“or”-operations.

5 Discussion

The usual “and”-operation is associative. Thus, we can define f&(a, b, c) as, e.g.,
f&(a, f&(b, c)) or as f&( f&(a, b), c)—and the result will not change.
In contrast, the commonsense “and”-operation is not associative. With the com-

monsense “and”-operation, we will have two different results.
So, e.g., for three inputs, we get a more general formula

F&(a, b, c) = α · (a + b + c) + β · (a · b + b · c + a · c) + (1 − 3α − 3β) · a · b · c.
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6. Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer, Boston,
Dordrecht (1999)

7. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)



Extension to Multidimensional Problems
of a Fuzzy-Based Explainable
and Noise-Resilient Algorithm

Javier Viaña, Stephan Ralescu, Kelly Cohen, Anca Ralescu,
and Vladik Kreinovich

Abstract While Deep Neural Networks (DNNs) have shown incredible perfor-
mance in a variety of data, they are brittle and opaque: easily fooled by the presence
of noise, and difficult to understand the underlying reasoning for their predictions
or choices. This focus on accuracy at the expense of interpretability and robustness
caused little concern since, until recently, DNNs were employed primarily for scien-
tific and limited commercial work. An increasing, widespread use of artificial intel-
ligence and growing emphasis on user data protections, however, motivates the need
for robust solutions with explainable methods and results. In this work, we extend a
novel fuzzy based algorithm for regression to multidimensional problems. Previous
research demonstrated that this approach outperforms neural network benchmarks
while using only 5% of the number of the parameters.
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1 Introduction

1.1 A Subsection Sample

A key factor in the success of deep neural networks ability to treat a variety of data
is the depth of the model and the addition of multiple hidden layers. While DNNs
demonstrate high accuracy in several tasks, their excellence relies on difficult-to-
understand abstract representations in the hidden layers that obscure their decision-
making process. Furthermore, despite the fact that DNNs can discover patterns in
the features of the data, minor changes in the inputs, such as noise imperceptible to
human senses, can cause theDNNs tomisclassify an object ormake a false prediction
[1]. The fragile black-box nature of these networks complicates their application to
fields such as medicine, autonomous cars, national security, or any field where safety
an accountability must be guaranteed. As the use of artificial intelligence has become
more widespread with an increasing emphasis on data privacy and protection, the
need for interpretable solutions with explainable methods and results has emerged
as an essential problem.

In [2], a novel fuzzy based regression algorithm was introduced for one-
dimensional input problems. In the benchmark of the authors, their method proved
greater noise-resilience and explainability than the neural networks considered for
the same task. Given the success of such prior work, this paper is an extension of [2]
to multidimensional problems. The architecture of the algorithm remains the same
as the one described in [2], but the learning rules are slightly adapted to be used in
an N-dimensional scenario.

Section 1.2 is a description of the algorithm’s phases and the corresponding math-
ematical formulation. Section 2 contains the empirical evaluation obtained for a 2-
input 1-output problem, proving the applicability of the method. Section 3 offers a
discussion of the algorithm’s properties, and finally in Sect. 4, the authors cover their
conclusions and ideas for future work.

1.2 The Algorithm

As opposed to Deep Learning architectures, this algorithm uses a single layer of
predictors (each specialized in a specific region of the input space). The Takagi–
Sugeno-Kang method is used to merge the outcomes of all the individual predictors,
similar to how an ensemble systemworks (where each expert is trained in a particular
subspace of the data). Nevertheless, the main difference with the latter is the collec-
tive training and the ability to share information among the systems. Furthermore,
each predictor has no more than 3N + 1 parameters (N being the number of input
dimensions), whereas the most popular ensemble systems often use an entire neural
network for each expert. The fact that the algorithm has a single layer, together
with the reduced number of parameters needed for the prediction, makes it very
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Fig. 1 Block diagram of the proposed algorithm for multidimensional function approximation
given a noisy cloud of training datapoints and non-noisy testing data. UL and SL stand for
Unsupervised and Supervised Learning, respectively

explainable and easy to visualize. The block diagram of the algorithm is shown in
Fig. 1.

The first step is the application of a Hierarchical Clustering algorithm (agglom-
erative, MAX-linkage/complete-linkage) to divide the joint input–output space in
clusters of data. These clusters are not necessarily isolated groups of datapoints,
but rather points that were close enough to be modeled in conjunction. Each cluster
c (bottom right index in the formulation) is approximated with an N-dimensional
hyperplane (rc). The N slopes and the intercept of the hyperplane are identified with
m and n, respectively.

xq and i xq represent the input vector of the qth datapoint and the i th feature or
entry of this vector. In other words, the upper left index refers to the dimension and
upper right index determines the instance of the data.

rc
(
xq

) = nc +
N∑

i=1

imc
i xq (1)

Additionally, the clusters can be seen as fuzzy, where some datapoints belong to
the cluster with a higher degree of membership. To model the membership function
(μ) of a given fuzzy set (c), an N-dimensional Cauchy distribution’s [3] density
function is chosen, (2). The i ac parameters represent the location of the function’s
center, which is initialized with the mean of the cluster in each dimension. Similarly,
the initialized i bc parameters match the standard deviation.



292 J. Viaña et al.

μc
(
xq

) =
[

1 +
N∑

i=1

( i xq − i ac
i bc

)2
]−1

(2)

Finally, the prediction is obtained using a Takagi–Sugeno-Kang approach. This is
calculated as the weighted mean considering the information of all the membership
functions and hyperplanes, as shown in Eq. (3).

y
∧q =

[
C∑

c=1

μc
(
xq

)
rc

(
xq

)
][

C∑

c=1

μc
(
xq

)
]−1

(3)

For the training of the parameters, Gradient Descent (GD) learning is used. This is
possible given the analytical definition of the algorithm, which inmany other popular
fuzzy-based predictors is not necessarily always true [4]. Nevertheless, there is a
plethora of gradient-free learning algorithms for that type of systems that might rely
on the experimental inference, [5–7]. In the present case, the GD was carried out
minimizing the Mean Squared Total Loss J shown in Eq. (4).

J =
Q∑

q=1

Jq = 1

2

Q∑

q=1

(
yq − y

∧q)2 (4)

The resulting learning rules for the parameters are

�nc = ηn

Q∑

q=1

uqc (5)

i�mc = ηm

Q∑

q=1

uqc
i x

q
(6)

i�ac = −ηa

Q∑

q=1

vq
c

(
i x

q − i ac
)

(7)

i�bc = −ηb

Q∑

q=1

vq
c

(
i x

q − i ac
)2

, (8)

where η represents the learning rate for each parameter and the auxiliary variables
uqc and v

q
c are

uqc = (
yq − y

∧q)
[

C∑

k=1

μk
(
xq

)
]−1

μc
(
xq

)
(9)



Extension to Multidimensional Problems of a Fuzzy-Based … 293

vq
c = uqc

[
y
∧q − rc

(
xq

)]
μc

(
xq

)
(10)

2 Results

In order to prove that the prior formulation is correct and applicable to the multi-
dimensional case, a set of 2-input 1-output functions is selected to visually assess
the performance of the algorithm. These functions, F1, F2 and F3 are defined in
Eqs. (11–13).

F1
(
1x, 2x

) = 3
(
1x

)2 + 51x2x
(
1 + 4sin

(
1x

)) + 4, 1x ∈ [4, 14], 2x ∈ [1, 6] (11)

F2
(
1x, 2x

) = sin
(
1x

)
cos

(
2x

)
, 1x ∈ [−4, 4], 2x ∈ [−4, 4] (12)

F3
(
1x, 2x

) =
[(

1x
)2 + 3

(
2x

)2]
e−(1x)

2−(2x)
2

, 1x ∈ [−3, 3], 2x ∈ [−3, 3] (13)

For training, a total of 60, 150 and 150 datapoints were used for each function,
respectively. These instances were randomly generated within the input spaces. In
previous research [2], this algorithm exhibited better performance than the neural
networks when the training data was corrupted with artificial noise. In order to be
coherent, in this bi-dimensional input space problem, a random amount of noise was
injected in the training instances as well (the amount of noise was obtained using
uniform distributions with boundaries±100,±0.025, and±0.025 respectively). For
all of the three functions, the learning rate was 0.001. The training stopped when
the evolution of the mean squared error (with respect to the corrupted training data)
converged (which translates into 2000, 800 and 1600 epochs for each surface). The
number of clusters considered were 5, 12 and 8. Figure 2 illustrates the approxima-
tions obtained against the non-noisy ground truth across the entire domain of the
input space.

3 Discussion

As it can be seen in Fig. 2, the solution provided by the algorithm matches the real
non-noisy surface despite using the corrupted training data. This not only proves the
applicability of the formulation to multidimensional problems but it also emphasizes
the noise-resilience of the proposed algorithm.

The choice of the 2-dimensional functions was made so that the results could be
displayed in the figures included in the paper, which enables a visual assessment of
the algorithm’s applicability to the multidimensional problems.
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Fig. 2 Approximations vs non-noisy ground truth plots with standardized variables. Top, middle,
and bottom rows refer to functions F1, F2 and F3 respectively. Both columns show the same
information but with different perspectives
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One of the advantages of this algorithm is the possibility of direct integration
of expert knowledge in the system as a new cluster (a theoretical or experimental
formulation of the problem studied, or even an approximation of the it). This is not
an option in a conventional neural network, where the weights do not have a physical
or mathematical meaning as clear as the slope of a linear relationship. Also, adding
a new neuron in a network would unbalance the weights, destroying the predictive
power of the system, and ultimately requiring retraining.

Furthermore, the weights of a trained neural network depend on the initialized
weights, which often vary in every execution. Thus, the parameters of the model are
different after every training process. On the contrary, the method covered in this
research converges always to the same values (since the hierarchical clustering is
entirely deterministic).

4 Conclusions

We have introduced an extension of [2] to multidimensional prediction tasks that is
resilient to noise and explainable. Our algorithm in [2] is simple and uses an order
of magnitude fewer parameters than the benchmark neural network. We achieve
explainability by leveraging the interpretable nature of the fuzzy inferencing system,
without resorting to the use of hidden layers. Each fuzzy set represents a linear
approximation, which could refer to a theoretical or physical formulation of the
problem. Since our algorithm generates a weighted prediction, where all regressions
have an influence in the outcome, it does not rely on a single predictor, resulting in
resilience to noise.

In future work, we plan to apply our algorithm to real-world high-dimensional
data sets covering a variety of applications characterized by a need for resilient and
explainable results. These include the evaluation of our algorithm against the state-
of-the-art for robust and interpretable DNNs, particularly when ground truth func-
tions are unavailable, as well as the integration of the proposed approach into other
popular methodologies such as image processing and feature recognition problems
in conjunction with Convolutional Neural Networks.
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Additional Spatial Dimensions Can Help
Speed Up Computations

Luc Longpré, Olga Kosheleva, and Vladik Kreinovich

Abstract While we currently only observe 3 spatial dimensions, according to mod-
ern physics, our space is actually at least 10-dimensional. In this paper, on different
versions of themulti-D spatialmodels, we analyze how the existence of the additional
spatial dimensions can help computations. It turns out that in all the versions, there
is some speed up—moderate when the extra dimensions are actually compactified,
and drastic if extra dimensions are separated by a potential barrier.

1 Computations and Space Dimensions: How They Are
Related and What Are the Remaining Open Problems

Many computational problems require too much computation time. It is known
thatmanypractical computational problems areNP-hard; see, e.g., [4, 6]. Thismeans,
crudely speaking, that unless it turns out that P = NP (whichmost computer scientists
do not believe to be possible), any algorithm that always solves the corresponding
problem will require, at least for some inputs of reasonably large size, an unrealisti-
cally long time to solve—e.g., time larger than the lifetime of the Universe.

Parallelization can help—at least to some extent. If for a person, some task takes
too much time, this person can (and does) ask for help. When two or more people
work on some task, they can perform it faster. Similarly,when a certain computational
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task requires too much time on a single computer, a natural way to speed up compu-
tations is to divide the original task between several computers—i.e., to parallelize
computations. Many modern high-performance computers consist of thousands of
processors working in parallel on the same task, and for many computational tasks,
this indeed leads to a drastic speed-up.

Fundamental limitations of parallelization speed-up. In spite of the numerous
successes of parallel computations, in general, parallelization is not a panacea: this
idea has limitations. Some of these limitations are technical. These limitations will
hopefully be overcome in the future. However, as we will show, there are also fun-
damental limitations on how much speed-up can be achieved by parallelization; see,
e.g., [5].

Indeed, let us assume that we have a parallel computer that finishes its computa-
tions in time Tpar. Let us show how we can simulate its computations sequentially.
According to modern physics (see, e.g., [1, 8]), the speed of all processes is bounded
by the speed of light c. During the time Tpar, the information from the processorsmust
reach the user. This means that the processors that participate in this computation

must be located within the distance R
def= c · Tpar, i.e., in geometric terms, inside the

sphere of radius R centered at the user location.
The overall volume of this area is equal to

V = 4

3
· π · R3 = 4

3
· π · c3 · T 3

par.

Thus, if we denote by ΔV the smallest possible volume of a single processor, then
the number of processor Nproc that can fit inside this sphere cannot exceed the value

Nproc ≤ Nmax
def= V

ΔV
= 4

3 · ΔV
· π · c3 · T 3

par. (1)

Whatever we can compute in parallel on Nproc processors, we can also compute
sequentially, if we first simulate all the first steps of all the processor, then all the
second steps of all the processors, etc. This way, each step of the parallel computer
requires Nproc steps of the sequential computer. Thus, what was computed on a
parallel computer in time Tpar can be computed on a sequential computer in time
Tseq = Nproc · Tpar.

Due to the inequality (1), we have

Tseq ≤ 4

3 · ΔV
· π · c3 · T 3

par · Tpar = C · T 4
par, (2)

where we denoted

C
def= 4

3 · ΔV
· π · c3.
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So, if the fastest time that it takes for a sequential computer to solve a problem is T ,
the fastest time Tpar that this same problem can be solved on a parallel computer is
bounded by the inequality T ≤ Tseq ≤ C · T 4

par, thus

Tpar ≥ C−1/4 · T 1/4. (3)

This implies that by using parallelization, we can speed up, at best, to the 4-th root
of the sequential time. This is good, but not ideal: if the original sequential time T
was exponential—as for NP-hard problems—the parallel time is still exponential.

Extra dimensions: a brief reminder. The above argument assumes that we live in
a 3-dimensional space. However, according to modern physics, the requirement that
quantum field theory is consistent implies that the dimension of space is at least 10;
see, e.g., [2, 7, 8].

Resulting challenge and what we do in this paper. A natural question is: how does
the presence of these extra spatial dimensions affect computations?

This is the question that we study in this paper.

2 First (Naive) Idea and Why It Is Naive

A seemingly natural idea. At first glance, the situation is straightforward: if instead
of 3 spatial dimensions we have d > 3 dimensions, then the volume of the area
inside the sphere of radius R is equal to V = cd · Rd for some constant cd . Taking
into account that R = c · Tpar, we conclude that V = cd · cd · T d

par. Thus, the number
Nproc of processors is bounded by the number

Nproc ≤ Nmax
def= V

ΔV
= cd

ΔV
· cd · T d

par.

Hence, this parallel computation can be simulated on a sequential computer in time

Tseq ≤ Nproc · Tpar = cd
ΔV

· cd · T d
par · Tpar = Cd · T d+1

par ,

where this time
Cd

def= cd
ΔV

· cd .

So, instead of the previous rather-high lower bound Tpar ≥ const · T 1/4
seq , we get a

much better lower bound Tpar ≥ const · T 1/(d+1)
seq , with d ≥ 10.

Why this idea is naive. The above result looks good, but it is based on the simplified
idea that extra spatial dimensions are similar to the current three ones. In reality,
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the fact that we currently observe only three dimensions means that different spatial
dimensions are different.

There are two possible approaches to how to explain that other dimensions are
not yet observable. In this section, we describe these two approaches, and in the
following sections, we analyze how these approaches affect computations.

First approach: actual compactification. The first natural approach is to conclude
that since we cannot observe any changes in other spatial dimensions, this means
that these dimensions are very small in size—e.g., that each of these dimensions
represents not a line, but a circle of a small radius.

Second approach. The second natural approach is to assume that while all our
processes are happening in a very small fragment of the additional dimensions. these
dimensions actually have larger size—only due to some physical reasons, we cannot
leave this small fragment. An analogy is when we are in a narrow valley between
two mountain ranges: in principle, we can get out of this valley, but this requires
climbing high mountains—and for that, we will need lots of energy and probably
special equipment, which few of us have.

What we will do now. Let us see how both physically realistic versions of extra
spatial dimensions can affect computations.

3 First Approach: How Actual Compactification Affects
Computations

It all boils down to computing the volume. The above arguments about the limits
to parallelization were based on computing the volume V of the inside of the sphere
of radius R = c · Tpar, where c is the speed of light and Tpar is the computation time.
In the analysis of the 3-D situation, we used the formula for the volume of a sphere
in the 3-D space. To see how the resulting calculations will change in the multi-D
space, we need to find, for this space, what is the corresponding volume V .

Let us compute this volume. To find this volume, let us recall that the distance
between the two points x = (x1, x2, . . .) and y = (y1, y2, . . .) in the multi-D space
is equal to

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 + (x4 − y4)2 + . . ..

For reasonable computation time Tpar, the radius R = c · Tpar is large, and thus, is
much larger than the size se of each extra dimension: remember that this size is so
small that we do not notice these extra spatial dimensions. So, the terms

(x4 − y4)
2, . . .
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corresponding to differences in extra dimensions—and which are of order s2e—are
much much smaller than the terms (x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 describing
the distance in the 3-D space. Hence, with high accuracy, we can safely assume that
the distance between the two multi-D points is equal to the distance between their
3-D parts:

d(x, y) ≈ d3(x, y)
def=

√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

Therefore, the set of all the points which are at distance ≤ R from the user can be
described as follows: we take all the points (x1, x2, x3) from the corresponding 3-D
sphere, and for each of these points, we consider all possible combinations (x4, . . .)
of additional spatial coordinates.

The size of each additional coordinate is se, and in a d-dimensional space, there
are d − 3 additional spatial coordinates. Thus, the overall volume of the additional
part of sd−3

e , and the overall volume of the sphere in d-dimensional space is equal to
4

3
· π · R3 · sd−3

e .

How many processors can we fit now? The multi-D volume ΔV of a processor
can be obtained by multiplying its 3-D volume ΔV3 by its volume ΔVe in the extra
dimensions. If the size of the processor in additional dimensions is se, then we get the
exact same number of processors as in the 3-D case, no gain at all from the existence
of additional spatial dimensions.

However, if we manage to decrease the size of a processor in extra dimensions to
less than se, so that the volume ΔVe of a processor in the extra dimensions is smaller
than sd−3

e , then, by dividing the overall multi-D volume by the volume of a single
processor, we get the new value for the number of processors:

Nproc ≤ Nmax = V

ΔV
=

4

3
· π · R3 · sd−3

e

ΔV3 · ΔVe
= 4

3 · ΔV3
· π · R3 · s

d−3
e

ΔVe
.

Since we consider the case when ΔVe < sd−3
e , this number of processors is larger

than the corresponding 3-D number of processors

4

3 · ΔV3
· π · R3

by a factor of

C = sd−3
e

ΔVe
> 1.

Conclusion for this approach. In the first approach to multi-D space-time—when
all extra dimensions are actually compactified—after an appropriate level of minia-
turization, we will be able to get a C times increase in number of processors that we
can fit into each area—and thus, in principle, a constant times computation speed-up.
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Comment. This is not as spectacular aswe could imagine based on the naive approach,
but any speed up is good.

4 Second Approach: How It Affects Computations

At first glance. If we limit ourselves to the same small area of extra dimensions in
which all observable processes take place, then we get the exact same situation as
in the first approach—and thus, we can get the same constant times increase, where
the constant depends on how successful we are in minituarizing our processors.

But now we have another option. However, in the second approach, we do not have
to limit ourselves to the small area that contains all observable processes: there are
other areas as well, it is just that these areas are difficult to reach: since going there
requires a lot of energy, thus preventing usual particles from going there.

What if we apply this considerable amount of energy and reach these additional
areas? What do we gain with respect to computations?

First gain: all the promises of the naive approach turn out to be true. If we
are allowed to use a significant area in extra dimensions, then we can have all the
advantages promised by the above-described naive approach: namely, instead of
being able to fit ∼ T 3

par processors into an area of radius R = c · Tpar, we can fit a
much larger amount of ∼ T d

par processors. Thus, instead of the possibility to reduce

the sequential computation time Tseq to Tpar ∼ T 1/4
seq , we can get a much more drastic

speed-up Tpar ∼ T 1/(d+1)
seq .

Interestingly, there is an additional speed-up. The fact that all the processes are
limited to a narrow area of values of extra spatial dimensionsmeans, in effect, that this
limitation is the property of the underlying space-time, not of any specific physical
field. In other words, this means that the space-time is not as flat as the space-time
of our usual 3D space—that would have enabled particles to easily go in all possible
spatial directions—but rather curved.

According to General Relativity theory—the theory that describes curved space-
time in modern physics—in a curved space-time, free particles move along geodesic
lines, i.e., lines in which the resulting proper timeΔs between the each two locations
is the shortest possible. In terms of coordinate time t , this overall proper time can

be computed by adding up proper times ds = ds

dt
· dt corresponding to different

parts of the trajectory, i.e., as Δs =
∫

ds

dt
dt. According to General Relativity, the

ratio
ds

dt
is, in general, smaller than 1: in a gravitational field, all the processes slow

down, and if this field is very strong—e.g., near a black hole—then it can slow down
drastically: when the outside world measures 10 years, people near the black hole
will only count several months.
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In [3], we considered possible computational consequences of this effect in the
3D space. Interestingly, in the second approach to the multi-D cases, we have an
additional possibility to use this effect. Namely, the fact that for all the particles, the
optimal path is by going via the narrow zone of observable processes means that in

this zone, the ratio
ds

dt
is much smaller than in the neighboring zones—just like the

fact that the fastest way to get from two points in the US usually involves taking a
freeway is an indication that the allowed speed on the freeway is larger than on all
other roads.

For example, if we are in the vicinity of a gravitating body, where the ratio
ds

dt
is

smaller than 1—and which is thus an analogue of a freeway— particles will tend to
move close to this vicinity, which we observe as gravitational attraction. The stronger

the gravitational field, the smaller the ratio
ds

dt
and thus, the more probable it is that

the particles will bend towards this vicinity—so the larger the observed gravitational
attraction.

In our multi-D case, the fact that in the neighborhood of our zone the value of the
ratio is much larger than in the zone itself means that during the same time Δt , the
proper time Δs in this neighborhood will be larger than in our zone. In other words,
during the same coordinate time, the processor located in the neighborhood will be
able to perform more operations than a processor that stays in our zone. Thus, we
will get an additional speed-up.

Conclusion for this approach. In the second approach,

• not only we can have more processor working in parallel—by placing additional
processors outside the narrow zone where the observable processes occur,

• but also the processors placed outside this zone will compute much faster than the
ones in the zone, which will lead to an additional speedup.
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